电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 第二部分 突破热点 分层教学 专项二 专题三 1 第1讲 等差数列与等比数列专题强化训练-人教版高三全册数学试题VIP免费

高考数学二轮复习 第二部分 突破热点 分层教学 专项二 专题三 1 第1讲 等差数列与等比数列专题强化训练-人教版高三全册数学试题_第1页
1/3
高考数学二轮复习 第二部分 突破热点 分层教学 专项二 专题三 1 第1讲 等差数列与等比数列专题强化训练-人教版高三全册数学试题_第2页
2/3
高考数学二轮复习 第二部分 突破热点 分层教学 专项二 专题三 1 第1讲 等差数列与等比数列专题强化训练-人教版高三全册数学试题_第3页
3/3
第1讲等差数列与等比数列一、选择题1.已知等差数列{an}的前n项和为Sn,且a3·a5=12,a2=0.若a1>0,则S20=()A.420B.340C.-420D.-340解析:选D.设数列{an}的公差为d,则a3=a2+d=d,a5=a2+3d=3d,由a3·a5=12得d=±2,由a1>0,a2=0,可知d<0,所以d=-2,所以a1=2,故S20=20×2+×(-2)=-340,故选D.2.(2018·益阳、湘潭调研)已知等比数列{an}中,a5=3,a4a7=45,则的值为()A.3B.5C.9D.25解析:选D.设等比数列{an}的公比为q,则a4a7=·a5q2=9q=45,所以q=5,==q2=25.故选D.3.(一题多解)已知Sn是数列{an}的前n项和,且Sn+1=Sn+an+3,a4+a5=23,则S8=()A.72B.88C.92D.98解析:选C.法一:由Sn+1=Sn+an+3得an+1-an=3,则数列{an}是公差为3的等差数列,又a4+a5=23=2a1+7d=2a1+21,所以a1=1,S8=8a1+d=92.法二:由Sn+1=Sn+an+3得an+1-an=3,则数列{an}是公差为3的等差数列,S8===92.4.已知数列{an}是等比数列,数列{bn}是等差数列,若a1·a6·a11=-3,b1+b6+b11=7π,则tan的值是()A.-B.-1C.-D.解析:选A.依题意得,a=(-)3,3b6=7π,所以a6=-,b6=,所以==-,故tan=tan=tan=-tan=-,故选A.5.(2018·长春质量检测(一))等差数列{an}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时n的值为()A.6B.7C.8D.9解析:选C.由d>0可得等差数列{an}是递增数列,又|a6|=|a11|,所以-a6=a11,即-a1-5d=a1+10d,所以a1=-,则a8=-<0,a9=>0,所以前8项和为前n项和的最小值,故选C.6.对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,数列{an}的“差数列”的通项公式为an+1-an=2n,则数列{an}的前n项和Sn=()A.2B.2nC.2n+1-2D.2n-1-2解析:选C.因为an+1-an=2n,所以an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+…+22+2+2=+2=2n-2+2=2n,所以Sn==2n+1-2.二、填空题7.(一题多解)(2018·高考全国卷Ⅰ)记Sn为数列{an}的前n项和.若Sn=2an+1,则S6=________.解析:法一:因为Sn=2an+1,所以当n=1时,a1=2a1+1,解得a1=-1;当n=2时,a1+a2=2a2+1,解得a2=-2;当n=3时,a1+a2+a3=2a3+1,解得a3=-4;当n=4时,a1+a2+a3+a4=2a4+1,解得a4=-8;当n=5时,a1+a2+a3+a4+a5=2a5+1,解得a5=-16;当n=6时,a1+a2+a3+a4+a5+a6=2a6+1,解得a6=-32;所以S6=-1-2-4-8-16-32=-63.法二:因为Sn=2an+1,所以当n=1时,a1=2a1+1,解得a1=-1,当n≥2时,an=Sn-Sn-1=2an+1-(2an-1+1),所以an=2an-1,所以数列{an}是以-1为首项,2为公比的等比数列,所以an=-2n-1,所以S6==-63.答案:-638.(2018·惠州第二次调研)已知数列{an}满足a1=1,an+1-2an=2n(n∈N*),则数列{an}的通项公式an=________.解析:an+1-2an=2n两边同除以2n+1,可得-=,又=,所以数列是以为首项,为公差的等差数列,所以=+(n-1)×=,所以an=n·2n-1.答案:n·2n-19.设某数列的前n项和为Sn,若为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d(d≠0)的等差数列{an}为“和谐数列”,则该等差数列的公差d=________.解析:由=k(k为常数),且a1=1,得n+n(n-1)d=k,即2+(n-1)d=4k+2k(2n-1)d,整理得,(4k-1)dn+(2k-1)(2-d)=0,因为对任意正整数n,上式恒成立,所以得所以数列{an}的公差为2.答案:2三、解答题10.已知各项都为正数的数列{an}满足a1=1,a-(2an+1-1)an-2an+1=0.(1)求a2,a3;(2)求{an}的通项公式.解:(1)由题意可得a2=,a3=.(2)由a-(2an+1-1)an-2an+1=0,得2an+1(an+1)=an(an+1),因为{an}的各项都为正数,所以=.故{an}是首项为1,公比为的等比数列,因此an=.11.(2018·高考全国卷Ⅰ)已知数列{an}满足a1=1,nan+1=2(n+1)an.设bn=.(1)求b1,b2,b3;(2)判断数列{bn}是否为等比数列,并说明理由;(3)求{an}的通项公式.解:(1)由条件可得an+1=an.将n=1代入得,a2=4a1,而a1...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 第二部分 突破热点 分层教学 专项二 专题三 1 第1讲 等差数列与等比数列专题强化训练-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部