电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 第1部分 重点强化专题 专题5 解析几何 专题限时集训13 圆锥曲线中的综合问题 理-人教版高三全册数学试题VIP免费

高考数学二轮复习 第1部分 重点强化专题 专题5 解析几何 专题限时集训13 圆锥曲线中的综合问题 理-人教版高三全册数学试题_第1页
1/3
高考数学二轮复习 第1部分 重点强化专题 专题5 解析几何 专题限时集训13 圆锥曲线中的综合问题 理-人教版高三全册数学试题_第2页
2/3
高考数学二轮复习 第1部分 重点强化专题 专题5 解析几何 专题限时集训13 圆锥曲线中的综合问题 理-人教版高三全册数学试题_第3页
3/3
专题限时集训(十三)圆锥曲线中的综合问题(对应学生用书第103页)(限时:40分钟)题型1圆锥曲线中的定值问题3题型2圆锥曲线中的最值,范围问题1,4题型3圆锥曲线中的探索性问题21.(2017·河南洛阳二模)已知动圆M过定点E(2,0),且在y轴上截得的弦PQ的长为4.(1)求动圆圆心M的轨迹C的方程;(2)设A,B是轨迹C上的两点,且OA·OB=-4,F(1,0),记S=S△OFA+S△OAB,求S的最小值.【导学号:07804096】[解](1)设M(x,y),PQ的中点为N,连接MN(图略),则|PN|=2,MN⊥PQ,∴|MN|2+|PN|2=|PM|2.又|PM|=|EM|,∴|MN|2+|PN|2=|EM|2,∴x2+4=(x-2)2+y2,整理得y2=4x.∴动圆圆心M的轨迹C的方程为y2=4x.(2)设A,B,不妨令y1>0,则S△OFA=·|OF|·y1=y1,∵OA·OB=-4,∴x1x2+y1y2=+y1y2=-4,解得y1y2=-8,①当y1=-y2时,AB⊥x轴,A(2,2),B(2,-2),S△AOB=4,S△OFA=,S=5.当y1≠-y2时,直线AB的方程为=,即y-y1=,令y=0,得x=2,∴直线AB恒过定点(2,0),设定点为E,∴S△OAB=|OE|·|y1-y2|=y1-y2,由①可得S△OAB=y1+,∴S=S△OFA+S△OAB=y1+=y1+≥2=4.综上,Smin=4.2.(2017·陕西教学质量检测)已知F1,F2为椭圆E:+=1(a>b>0)的左、右焦点,点P在椭圆E上,且|PF1|+|PF2|=4.(1)求椭圆E的方程;(2)过F1的直线l1,l2分别交椭圆E于A,C和B,D,且l1⊥l2,问是否存在常数λ,使得,λ,成等差数列?若存在,求出λ的值;若不存在,请说明理由.【导学号:07804097】[解](1)∵|PF1|+|PF2|=4,∴2a=4,a=2.∴椭圆E:+=1.将P代入可得b2=3,∴椭圆E的方程为+=1.(2)①当AC的斜率为零或斜率不存在时,+=+=;②当AC的斜率k存在且k≠0时,AC的方程为y=k(x+1),代入椭圆方程+=1,并化简得(3+4k2)x2+8k2x+4k2-12=0.设A(x1,y1),C(x2,y2),则x1+x2=-,x1·x2=.|AC|=|x1-x2|==.∵直线BD的斜率为-,∴|BD|==.∴+=+=.综上,2λ=+=,∴λ=.故存在常数λ=,使得,λ,成等差数列.3.(2017·长沙模拟)如图134,P是直线x=4上一动点,以P为圆心的圆Г过定点B(1,0),直线l是圆Г在点B处的切线,过A(-1,0)作圆Г的两条切线分别与l交于E,F两点.图134(1)求证:|EA|+|EB|为定值;(2)设直线l交直线x=4于点Q,证明:|EB|·|FQ|=|FB|·|EQ|.[解](1)设AE切圆Г于点M,直线x=4与x轴的交点为N,故|EM|=|EB|.从而|EA|+|EB|=|AM|=====4.所以|EA|+|EB|为定值4.(2)由(1)同理可知|FA|+|FB|=4,故E,F均在椭圆+=1上.设直线EF的方程为x=my+1(m≠0).令x=4,求得y=,即Q点纵坐标yQ=.由得,(3m2+4)y2+6my-9=0.设E(x1,y1),F(x2,y2),则有y1+y2=-,y1y2=-.因为E,B,F,Q在同一条直线上,所以|EB|·|FQ|=|FB|·|EQ|等价于(yB-y1)(yQ-y2)=(y2-yB)(yQ-y1),即-y1·+y1y2=y2·-y1y2,等价于2y1y2=(y1+y2)·.将y1+y2=-,y1y2=-代入,知上式成立.所以|EB|·|FQ|=|FB|·|EQ|.4.(2017·衡水模拟)已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴的直线l与椭圆C相交于A,B两点.(1)求椭圆C的方程;(2)求OA·OB的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.【导学号:07804098】[解](1)由题意知=,=b,即b=.又a2=b2+c2,所以a=2,c=1.故椭圆C的方程为+=1.(2)由题意知直线l的斜率存在,设直线l的方程为y=k(x-4),A(x1,y1),B(x2,y2).由消去y可得(3+4k2)x2-32k2x+64k2-12=0.则Δ=322k4-4(3+4k2)(64k2-12)>0,解得0≤k2<.易知x1+x2=,x1x2=,所以OA·OB=x1x2+y1y2=x1x2+k2(x1-4)(x2-4)=(1+k2)x1x2-4k2(x1+x2)+16k2=(1+k2)·-4k2·+16k2=25-.因为0≤k2<,所以-≤-<-,所以-4≤25-<,所以OA·OB的取值范围为.(3)因为点B,E关于x轴对称,所以E(x2,-y2),所以直线AE的方程为y-y1=(x-x1).令y=0,可得x=x1-.因为y1=k(x1-4),y2=k(x2-4),所以x=x1-===1.所以直线AE与x轴交于定点(1,0).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 第1部分 重点强化专题 专题5 解析几何 专题限时集训13 圆锥曲线中的综合问题 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部