【大高考】2017版高考数学一轮总复习第9章平面解析几何第5节抛物线及其性质高考AB卷理抛物线的定义及方程1.(2013·全国Ⅱ,11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x解析设点M的坐标为(x0,y0),由抛物线的定义,得|MF|=x0+=5,则x0=5-.又点F的坐标为,所以以MF为直径的圆的方程为(x-x0)+(y-y0)y=0.将x=0,y=2代入得px0+8-4y0=0,即-4y0+8=0,所以y0=4.由y=2px0,得16=2p,解之得p=2,或p=8.所以C的方程为y2=4x或y2=16x,故选C.答案C2.(2014·大纲全国,21)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.解(1)设Q(x0,4),代入y2=2px得x0=.所以|PQ|=,|QF|=+x0=+.由题设得+=×,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x得y2-4my-4=0.设A(x1,y1)、B(x2,y2),则y1+y2=4m,y1y2=-4.故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).又l′的斜率为-m,所以l′的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x3,y3)、N(x4,y4),则y3+y4=-,y3y4=-4(2m2+3).故MN的中点为E,|MN|=|y3-y4|=.由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2++=.化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.抛物线的几何性质3.(2016·全国Ⅰ,10)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8解析不妨设抛物线C:y2=2px(p>0),则圆的方程可设为x2+y2=r2(r>0),如图,又可设A(x0,2),D,点A(x0,2)在抛物线y2=2px上,∴8=2px0,①点A(x0,2)在圆x2+y2=r2上,∴x+8=r2,②点D在圆x2+y2=r2上,∴5+=r2,③联立①②③,解得p=4,即C的焦点到准线的距离为p=4,故选B.答案B4.(2015·全国Ⅰ,20)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点,(1)当k=0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.解(1)由题设可得M(2,a),N(-2,a),或M(-2,a),N(2,a).又y′=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2),即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=+==.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.抛物线的定义及方程1.(2012·安徽,9)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点,若|AF|=3,则△AOB的面积为()A.B.C.D.2解析设点A(x1,y1),B(x2,y2),由|AF|=3及抛物线定义可得,x1+1=3,∴x1=2.∴A点坐标为(2,2),则直线AB的斜率k==2.∴直线AB的方程为y=2(x-1),即为2x-y-2=0,则点O到该直线的距离为d=.由消去y得,2x2-5x+2=0,解得x1=2,x2=.∴|BF|=x2+1=,∴|AB|=3+=.∴S△AOB=|AB|·d=××=.答案C2.(2015·陕西,14)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p=________.解析由于双曲线x2-y2=1的焦点为(±,0),故应有=,p=2.答案23.(2014·湖南,15)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a0)经过C,F两点,则=________.解...