§11.3条件概率、二项分布及正态分布基础篇固本夯基【基础集训】考点一条件概率、相互独立事件及二项分布1.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A.110B.15C.25D.12答案C2.甲、乙两人参加“社会主义核心价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为()A.34B.23C.57D.512答案D3.“石头、剪刀、布”又称“猜丁壳”,是一种流行多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在语音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”,“剪刀”胜“布”,而“布”又胜“石头”.若所出的拳相同,则为和局.小军和大明两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大明比赛至第四局小军胜出的概率是()A.127B.227C.281D.881答案B4.某个部件由三个元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为()A.15B.12C.35D.38答案D5.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.400B.300C.200D.100答案C6.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项有且只有一个选项是正确的,A学生对12个选择题中每个题的四个选项都没有把握,最后选择题的得分为X分,B学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其他三个选项都没有把握,最后选择题的得分为Y分,则D(Y)-D(X)=()A.12512B.3512C.274D.234答案A17.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.当已知蓝色骰子的点数为3或6时,两颗骰子的点数之和大于8的概率为.答案512考点二正态分布8.设每天从甲地去乙地的旅客人数为随机变量X,且X~N(800,502).则一天中从甲地去乙地的旅客人数不超过900的概率为()(参考数据:若X~N(μ,σ2),有P(μ-σ0).若ξ在(0,2)内取值的概率为0.8,则ξ在(1,2)内取值的概率为()A.0.2B.0.1C.0.8D.0.4答案D11.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0.84,则P(2