§2.4二次函数与幂函数A组基础题组1.(2015陕西模拟)若四个幂函数y=xa,y=xb,y=xc,y=xd在同一坐标系中的图象如图,则a、b、c、d的大小关系是()A.d>c>b>aB.a>b>c>dC.d>c>a>bD.a>b>d>c2.(2015浙江乐清白象中学模拟)已知幂函数f(x)=k·xα的图象过点,则k+α=()A.B.1C.D.23.(2016杭州学军中学第二次月考文,2,5分)函数y=ax2+a与y=(a≠0)在同一坐标系中的图象可能是()4.(2015安徽芜湖质检)已知函数f(x)=x2+x+c,若f(0)>0,f(p)<0,则必有()A.f(p+1)>0B.f(p+1)<0C.f(p+1)=0D.f(p+1)的符号不能确定5.(2013辽宁,11,5分)已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=()A.16B.-16C.a2-2a-16D.a2+2a-166.(2015四川,9,5分)如果函数f(x)=(m-2)x2+(n-8)x+1(m≥0,n≥0)在区间上单调递减,那么mn的最大值为()A.16B.18C.25D.7.(2016超级中学原创预测卷三,7,5分)已知关于x的方程|x-k|=k在区间[0,k+1]上有两个不相等的实根,则实数k的取值范围是()A.(0,1]B.(0,+∞)C.[1,+∞)D.(0,2)8.(2016超级中学原创预测卷八,11,6分)若函数f(x)=且b=f(f(f(0))),则b=;若y=是偶函数,且在(0,+∞)上是减函数,则整数a的值是.9.(2015杭州二模文,12,6分)设函数f(x)=其中c>0,则函数f(x)的零点为;若f(x)的值域是,则c的取值范围是.10.(2016杭州学军中学第二次月考文,13,4分)已知二次函数f(x)=-x2+x,其定义域和值域分别为[m,n]和[3m,3n](m
b>c,且a≠0),f(1)=0,且存在实数m使得f(m)=-a.(1)求证:①b≥0;②f(m+3)>0;(2)函数g(x)=f(x)+bx的图象与x轴的两个交点间的距离记为d,求d的取值范围.13.(2016超级中学原创预测卷二,19,15分)已知函数f(x)=ax2+bx+c(a≠0).(1)若函数y=为奇函数,求g(x)=f(x)-(a-1)x2-(2a+1)x-(c-2)在[-1,1]上的最小值h(a);(2)若a=2,当x∈[-1,1]时,f(x)的最大值与最小值之差总不大于3,求实数b的取值范围.B组提升题组1.若(x-3<(1+2x,则x的取值范围是()A.B.{x|x<-4}C.D.{x|x>-4}2.(2015诸暨一模文,5,5分)函数f(x)=xα+1,若f(x)在区间[a,b](0f(x2)C.f(x1)=f(x2)D.f(x1)与f(x2)的大小关系不能确定4.(2015浙江舟山模拟,6)已知幂函数f(x)的图象经过点,P(x1,y1),Q(x2,y2)(0x2f(x2);②x1f(x1);④<.其中正确结论的序号是()A.①②B.①③C.②④D.②③5.(2015浙江冲刺卷三,5)若函数f(x)=x2+m|x-2|在[0,+∞)上单调递增,则实数m的取值范围是()A.[-4,0]B.[-2,0]C.[0,4]D.[0,2]6.(2015陕西,12,5分)对二次函数f(x)=ax2+bx+c(a为非零),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.-1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上7.(2015镇海中学5月模拟,9,6分)已知函数f(x)=.当a=1时,不等式f(x)≥1的解集是;若函数f(x)的定义域为R,则实数a的取值范围是.8.(2015福建,16,4分)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于.9.(2016温州高三上学期返校联考文,20,15分)设函数f(x)=x2+(2a+1)x+a2+3a(a∈R).(1)求f(x)在[0,2]上的最小值g(a)的表达式;(2)若f(x)在闭区间[m,n]上单调递增,且{y|y=f(x),m≤x≤n}=[m,n],求a的取值范围.10.(2016温州高三上学期返校联考,18,15分)设二次函数f(x)=x2+bx+c(b,c∈R),f(1)=0,且1≤x≤3时,f(x)≤0恒成立,f(x)是区间[2,+∞)...