电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 函数的极值与最值专题检测(含解析)-人教版高三全册数学试题VIP免费

高考数学二轮复习 函数的极值与最值专题检测(含解析)-人教版高三全册数学试题_第1页
1/5
高考数学二轮复习 函数的极值与最值专题检测(含解析)-人教版高三全册数学试题_第2页
2/5
高考数学二轮复习 函数的极值与最值专题检测(含解析)-人教版高三全册数学试题_第3页
3/5
16函数的极值与最值1.(2014·课标全国Ⅱ改编)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则p是q的________条件.答案必要不充分解析当f′(x0)=0时,x=x0不一定是f(x)的极值点,比如,y=x3在x=0时,f′(0)=0,但在x=0的左右两侧f′(x)的符号相同,因而x=0不是y=x3的极值点.由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0.综上知,p是q的必要条件,但不是充分条件.2.(2013·辽宁改编)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)极值情况为________.答案无极大值也无极小值解析由x2f′(x)+2xf(x)=,得f′(x)=,令g(x)=ex-2x2f(x),x>0,则g′(x)=ex-2x2f′(x)-4xf(x)=ex-2·=.令g′(x)=0,得x=2.当x>2时,g′(x)>0;当0<x<2时,g′(x)<0,∴g(x)在x=2时有最小值g(2)=e2-8f(2)=0,从而当x>0时,f′(x)≥0,则f(x)在(0,+∞)上是增函数,∴函数f(x)无极大值,也无极小值.3.已知x=3是函数f(x)=alnx+x2-10x的一个极值点,则实数a=________.答案12解析f′(x)=+2x-10,由f′(3)=+6-10=0,得a=12,经检验满足.4.设变量a,b满足约束条件z=|a-3b|的最大值为m,则函数f(x)=x3-x2-2x+2的极小值为________.答案-解析据线性规划可得(a-3b)min=-8,(a-3b)max=-2,故2≤|a-3b|≤8,即m=8,此时f′(x)=x2-x-2=(x-2)·(x+1),可得当x≤-1时f′(x)>0,当-10,故当x=2时函数取得极小值,即f(x)极小值=f(2)=-.5.已知函数f(x)=x3+2bx2+cx+1有两个极值点x1,x2,且x1∈[-2,-1],x2∈[1,2],则f(-1)的取值范围是________.答案[3,12]解析方法一由于f′(x)=3x2+4bx+c,据题意方程3x2+4bx+c=0有两个根x1,x2,且x1∈[-2,-1],x2∈[1,2],令g(x)=3x2+4bx+c,结合二次函数图象可得只需此即为关于点(b,c)的线性约束条件,作出其对应平面区域,f(-1)=2b-c,问题转化为在上述线性约束条件下确定目标函数f(-1)=2b-c的最值问题,由线性规划易知3≤f(-1)≤12.方法二方程3x2+4bx+c=0有两个根x1,x2,且x1∈[-2,-1],x2∈[1,2]的条件也可以通过二分法处理,即只需g(-2)g(-1)≤0,g(2)g(1)≤0即可,利用同样的方法也可解答.6.已知函数f(x)的导数为f′(x)=x2-x,则当x=________时,函数f(x)取得极大值.答案0解析当x<0或x>1时,f′(x)>0;当02或a<-1解析f′(x)=3x2+6ax+3(a+2),令3x2+6ax+3(a+2)=0,即x2+2ax+a+2=0.因为函数f(x)有极大值又有极小值,所以方程x2+2ax+a+2=0有两个不相等的实根,即Δ=4a2-4a-8>0,解得a>2或a<-1.9.若函数f(x)=-x2+4x-3lnx在[t,t+1]上不单调,则t的取值范围是________________.答案00时,(x-k)f′(x)+x+1>0,求k的最大值.解(1)f(x)的定义域为(-∞,+∞),f′(x)=ex-a.若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0.所以,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.(2)由于a=1时,(x-k)f′(x)+x+1=(x-k)(ex-1)+x+1.故当x>0时,(x-k)f′(x)+x+1>0等价于k<+x(x>0).①令g(x)=+x,则g′(x)=+1=.由(1)知,函数h(x)=ex-x-2在(0,+∞)上单调递增,又h(1)=e-3<0,h(2)=e2-4>0.所以h(x)在(0,+∞)上存在唯一零点.故...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 函数的极值与最值专题检测(含解析)-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部