电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学异构异模复习 第八章 立体几何 8.4 直线、平面垂直的判定与性质撬题 理-人教版高三全册数学试题VIP免费

高考数学异构异模复习 第八章 立体几何 8.4 直线、平面垂直的判定与性质撬题 理-人教版高三全册数学试题_第1页
1/9
高考数学异构异模复习 第八章 立体几何 8.4 直线、平面垂直的判定与性质撬题 理-人教版高三全册数学试题_第2页
2/9
高考数学异构异模复习 第八章 立体几何 8.4 直线、平面垂直的判定与性质撬题 理-人教版高三全册数学试题_第3页
3/9
2018高考数学异构异模复习考案第八章立体几何8.4直线、平面垂直的判定与性质撬题理1.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定答案D解析由l1⊥l2,l2⊥l3可知l1与l3的位置不确定,若l1∥l3,则结合l3⊥l4,得l1⊥l4,所以排除选项B、C,若l1⊥l3,则结合l3⊥l4,知l1与l4可能不垂直,所以排除选项A.故选D.2.如下图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角A-PD-C的余弦值.解(1)证明:由PC⊥平面ABC,DE⊂平面ABC,故PC⊥DE.由CE=2,CD=DE=,得△CDE为等腰直角三角形,故CD⊥DE.由PC∩CD=C,DE垂直于平面PCD内两条相交直线,故DE⊥平面PCD.(2)由(1)知,△CDE为等腰直角三角形,∠DCE=.如下图,过D作DF垂直CE于F,易知DF=FC=FE=1,又已知EB=1,故FB=2.由∠ACB=得DF∥AC,==,故AC=DF=.以C为坐标原点,分别以CA,CB,CP的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A,E(0,2,0),D(1,1,0),ED=(1,-1,0),DP=(-1,-1,3),DA=.设平面PAD的法向量为n1=(x1,y1,z1),由n1·DP=0,n1·DA=0,得故可取n1=(2,1,1).由(1)可知DE⊥平面PCD,故平面PCD的法向量n2可取为ED,即n2=(1,-1,0),从而法向量n1,n2的夹角的余弦值为cos〈n1,n2〉==,故所求二面角A-PD-C的余弦值为.3.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.解(1)证明:因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.又因为平面AEF⊥平面EFCB,AO⊂平面AEF,所以AO⊥平面EFCB.所以AO⊥BE.(2)取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB,又OG⊂平面EFCB,所以OA⊥OG.如右图建立空间直角坐标系O-xyz,则E(a,0,0),A(0,0,a),B(2,(2-a),0),EA=(-a,0,a),BE=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则即令z=1,则x=,y=-1.于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos〈n,p〉==-.由题知二面角F-AE-B为钝角,所以它的余弦值为-.(3)因为BE⊥平面AOC,所以BE⊥OC,即BE·OC=0.因为BE=(a-2,(a-2),0),OC=(-2,(2-a),0),所以BE·OC=-2(a-2)-3(a-2)2.由BE·OC=0及0

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学异构异模复习 第八章 立体几何 8.4 直线、平面垂直的判定与性质撬题 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群