浙江省富阳市场口中学高三数学抛物线复习练习1.以坐标轴为对称轴,以原点为顶点且过圆x2+y2-2x+6y+9=0的圆心的抛物线的方程是()A.y=3x2或y=-3x2B.y=3x2C.y2=-9x或y=3x2D.y=-3x2或y2=9x2.若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为()A.圆B.椭圆C.双曲线D.拋物线3.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定4.(2012·四川卷)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()A.2B.2C.4D.25.拋物线C的顶点为原点,焦点在x轴上,直线x-y=0与拋物线C交于A,B两点,若P(1,1)为线段AB的中点,则拋物线C的方程为()A.y=2x2B.y2=2xC.x2=2yD.y2=-2x6.(2011·辽宁卷)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A.B.1C.D.7.过点M(2,4)作与抛物线y2=8x只有一个公共点的直线l有________条.8.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点.其中点A在x轴上方,若直线l的倾斜角为60°,则△OAF的面积为________.9.点P在抛物线x2=4y的图像上,F为其焦点,点A(-1,3),若使|PF|+|PA|最小,则相应P的坐标为____________.10.过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若|AB|=,|AF|<|BF|,则|AF|=________.11.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点.若|AF|=3,则|BF|=________.12.抛物线顶点在原点,它的准线过双曲线-=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为,求抛物线与双曲线的方程.13.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过M作MN⊥FA,垂足为N,求点N的坐标.114.(2013·高考浙江卷)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A、B两点,若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.抛物线(2)1.抛物线x2=y的焦点F到其准线l的距离是()A.2B.1C.D.2.已知抛物线y2=2px(p>0)的准线与曲线x2+y2-6x-7=0相切,则p的值为()A.2B.1C.D.3.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A.x=1B.x=-1C.x=2D.x=-24.已知抛物线y2=2px的焦点F与双曲线-=1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上,且|AK|=|AF|,则△AFK的面积为()A.4B.8C.16D.325.设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是()A.y2=-8xB.y2=-4xC.y2=8xD.y2=4x6.抛物线y2=4x的焦点F到准线l的距离为()A.1B.2C.3D.47.抛物线y=2x2的焦点坐标为()A.B.(1,0)C.D.8.抛物线的焦点为椭圆+=1的左焦点,顶点为椭圆中心,则抛物线方程为________________.9.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.10.已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点.若AB的中点的坐标为(2,2),则直线l的方程为________.11.抛物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF为等边三角形,则p=________.212.已知过点A(-4,0)的动直线l与抛物线G:x2=2py(p>0)相交于B,C两点.当直线l的斜率是时,=4.(1)求抛物线G的方程;(2)设线段BC的中垂线在y轴上的截距为b,求b的取值范围.13.在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A,B两点.(1)如果直线l过抛物线的焦点,求·的值;(2)如果·=-4,证明直线l必过一定点,并求出该定点.14.如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C的纵坐标为2,求|MN|;(2)若|AF|2=|AM|·|AN|,求圆C的半径.3