第1讲概率、离散型随机变量及其分布列[A组夯基保分专练]一、选择题1.(2019·唐山市摸底考试)随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=0.2,P(2<ξ<6)=0.6,则μ=()A.6B.5C.4D.3解析:选C.由题意可知,P(ξ<6)=P(ξ<2)+P(2<ξ<6)=0.2+0.6=0.8,所以P(ξ>6)=1-0.8=0.2,所以P(ξ<2)=P(ξ>6),所以μ==4,故选C2.(2019·江西七校第一次联考)如图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A.B.C.-1D.2-解析:选C.设圆的半径为1,则该点取自阴影区域内的概率P===-1,故选C.3.用1,2,3,4,5组成无重复数字的五位数,若用a1,a2,a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位,则出现a1
a4>a5特征的五位数的概率为()A.B.C.D.解析:选B.1,2,3,4,5可组成A=120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有CC=6个,故出现a1a4>a5特征的五位数的概率为=.4.(2019·福建省质量检查)某商场通过转动如图所示的质地均匀的6等分的圆盘进行抽奖活动,当指针指向阴影区域时为中奖.规定每位顾客有3次抽奖机会,但中奖1次就停止抽奖.假设每次抽奖相互独立,则顾客中奖的概率是()A.B.C.D.解析:选D.记顾客中奖为事件A,恰抽1次就中奖为事件A1,恰抽2次中奖为事件A2,恰抽3次中奖为事件A3,每次抽奖相互独立,每次抽奖中奖的概率均为,所以P(A)=P(A1)+P(A2)+P(A3)=+×+××=,故选D.5.(2019·湛江模拟)某人连续投篮5次,其中3次命中,2次未命中,则他第2次和第3次均命中的概率是()A.B.C.D.解析:选A.某人连续投篮5次,其中3次命中,2次未命中,所以基本事件总数n=CC=10,他第2次和第3次均命中包含的基本事件个数m=CCC=3,所以他第2次和第3次均命中的概率P==.故选A.6.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.3解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以D(X)=10p(1-p)=2.4,所以p=0.6或p=0.4.由P(X=4)<P(X=6),得Cp4(1-p)6<Cp6(1-p)4,即(1-p)2<p2,所以p>0.5,所以p=0.6.二、填空题7.(2019·东北四市联合体模拟(一))若8件产品中包含6件一等品,从中任取2件,则在已知取出的2件产品中有1件不是一等品的条件下,另1件是一等品的概率为________.解析:设事件“从8件产品中取出的2件产品中有1件不是一等品”为A,事件“从8件产品中取出的2件产品中有1件是一等品”为B,则P(A)==,P(AB)===,所以另1件是一等品的概率为P(B|A)===.答案:8.向圆(x-2)2+(y-)2=4内随机投掷一点,则该点落在x轴下方的概率为________.解析:如图,连接CA,CB,依题意,圆心C到x轴的距离为,所以弦AB的长为2.又圆的半径为2,所以弓形ADB的面积为××4-×2×=-,所以向圆(x-2)2+(y-)2=4内随机投掷一点,则该点落在x轴下方的概率P=-.答案:-9.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射满3次为止.设甲每次击中的概率为p(p≠0),射击次数为η,若η的均值E(η)>,则p的取值范围是________.解析:由已知得,P(η=1)=p,P(η=2)=p(1-p),P(η=3)=(1-p)2,则E(η)=p+2(1-p)p+3(1-p)2=p2-3p+3>,解得p>,或p<,又因为p∈(0,1),所以p∈(0,).答案:(0,)三、解答题10.(2019·福州市第一学期抽测)某市某超市为了回馈新老顾客,决定在2019年元旦来临之际举行“庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小组提供的方案获得了征用.方案如下:将一个4×4×4...