2018高考数学异构异模复习考案第一章集合与常用逻辑用语1.3.2全称量词与存在量词撬题理1.设命题p:∃n∈N,n2>2n,则綈p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n答案C解析命题p是一个特称命题,其否定是全称命题,故选C.2.命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0答案D解析全称命题的否定为特称命题,因此命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f(n0)>n0”.3.已知命题“∃x∈R,使2x2+(a-1)x+≤0”是假命题,则实数a的取值范围是()A.(-∞,-1)B.(-1,3)C.(-3,+∞)D.(-3,1)答案B解析原命题的否定为∀x∈R,2x2+(a-1)x+>0,由题意知,其为真命题,则Δ=(a-1)2-4×2×<0,则-2