课时跟踪检测(四十一)直线、平面平行的判定及其性质一、题点全面练1.已知α,β表示两个不同的平面,直线m是α内一条直线,则“α∥β”是“m∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由α∥β,m⊂α,可得m∥β;反过来,由m∥β,m⊂α,不能推出α∥β.综上,“α∥β”是“m∥β”的充分不必要条件.2.(2019·湘中名校联考)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n解析:选DA中,两直线可能平行、相交或异面;B中,两平面可能平行或相交;C中,两平面可能平行或相交;D中,由线面垂直的性质定理可知结论正确,故选D.3.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合解析:选C如图,分别取另三条棱的中点A,B,C,将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR.4.已知α,β,γ是三个不重合的平面,l是直线.给出下列命题:①若l上两点到α的距离相等,则l∥α;②若l⊥α,l∥β,则α⊥β;③若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是()A.①②B.①②③C.①③D.②③解析:选D对于①,若直线l在平面α内,l上有两点到α的距离为0,相等,此时l不与α平行,所以①错误;对于②,因为l∥β,所以存在直线m⊂β使得l∥m,因为l⊥α,所以m⊥α,又m⊂β,所以β⊥α,所以②正确;对于③,l∥α,故存在m⊂α使得l∥m,因为α∥β,所以m∥β,因为l∥m,l⊄β,所以l∥β,③正确.故选D.5.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列三个命题:①若m∥l,且m⊥α,则l⊥α;②若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;③若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A.0B.1C.2D.3解析:选C①正确;②中三条直线也可能相交于一点,故错误;③正确,所以正确的命题有2个.6.已知下列命题:①若直线与平面有两个公共点,则直线在平面内;②如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;③若直线l与平面α平行,则l与平面α内的直线平行或异面;④若平面α∥平面β,直线a⊂α,直线b⊂β,则a∥b.上述命题正确的是________(填序号).解析:①若直线与平面有两个公共点,由公理1可得直线在平面内,故①对;②如果两条异面直线中的一条与一个平面平行,则另一条直线可能与该平面平行或相交或在平面内,故②错;③若直线l与平面α平行,则l与平面α内的直线无公共点,即平行或异面,故③对;④若平面α∥平面β,直线a⊂α,直线b⊂β,则a∥b或a,b异面,故④错.答案:①③7.如图是长方体被一平面截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析: 平面ABFE∥平面DCGH,平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理,EH∥FG,∴四边形EFGH是平行四边形.答案:平行四边形8.如图所示,设正方体ABCDA1B1C1D1的棱长为a,点P是棱AD上一点,且AP=,过B1,D1,P的平面交底面ABCD于PQ,Q在直线CD上,则PQ=________.解析:如图,连接PD1,PB1. 平面A1B1C1D1∥平面ABCD,而平面B1D1P∩平面ABCD=PQ,平面B1D1P∩平面A1B1C1D1=B1D1,∴B1D1∥PQ.又 B1D1∥BD,∴BD∥PQ,设PQ∩AB=M, AB∥CD,∴△APM∽△DPQ,∴==2,即PQ=2PM.又知△APM∽△ADB,∴==,∴PM=BD,又BD=a,∴PQ=a.答案:a9.(2019·南昌模拟)如图,在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面PAB;(2)求三棱锥PABM的体积.解:(1)证明: M,N分别为PD,AD的中点,∴MN∥PA,又MN⊄平面PAB,PA⊂平面PAB,∴MN∥平面PAB.在Rt△ACD中,∠CAD=60°,CN=AN,∴∠ACN=60°.又∠BAC=60°,∴CN∥AB. ...