2015-2016学年河南省许昌市鄢陵一中高一(上)12月月考数学试卷一、选择题(本大题共12小题,每小题5分,共60分.下列每小题所给选项只有一项符合题意.)1.(5分)(2015秋•许昌校级月考)已知集合A={x|y=x2﹣2},B={y|y=x2﹣2},则A∩B等于()A.RB.∅C.AD.B2.(5分)(2015秋•许昌校级月考)若函数f(x)在区间[m,n]上为增函数,则f(x)在[m,n]上()A.只有一个零点B.至少有一个零点C.至多有一个零点D.没有零点3.(5分)(2015秋•许昌校级月考)函数的定义域是()A.B.C.D.(﹣2,+∞)4.(5分)(2013秋•潍坊期末)设正方体的表面积为24,那么其外接球的体积是()A.B.C.D.5.(5分)(2007•山东)设a∈,则使函数y=xa的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,36.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+47.(5分)(2014•蚌埠一模)设,则a,b,c的大小关系是()A.a>c>bB.c>a>bC.a>b>cD.b>a>c8.(5分)(2015•乐山模拟)函数y=f(x)与y=g(x)的图象如图所示,则函数y=f(x)•g(x)的图象可能是(A.B.C.D.9.(5分)(2013秋•延庆县期末)已知函数,那么f(ln2)的值是()A.0B.1C.ln(ln2)D.210.(5分)(2015秋•许昌校级月考)在长方体ABCD﹣A1B1C1D1中,二面角D﹣AB﹣D1的大小为45°,DC1与平面ABCD所成角的大小为30°,那么异面直线AD1与DC1所成角的余弦值是()A.B.C.D.11.(5分)(2013•天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f(a)≤2f(1),则a的取值范围是()A.B.[1,2]C.D.(0,2]12.(5分)(2014秋•新城区校级期末)设m,n是两条不同的直线,α、β、γ是三个不同的平面,给出下列命题,正确的是()A.若m⊂β,α⊥β,则m⊥αB.若m∥α,m⊥β,则α⊥βC.若α⊥β,α⊥γ,则β⊥γD.若α∩γ=m,β∩γ=n,m∥n,则α∥β二、填空题(本大题共4个小题,每小题5分,共20分.请把答案填在答题卷相应的位置上)13.(5分)(2012秋•渭滨区校级期末)已知PA垂直平行四边形ABCD所在平面,若PC⊥BD,平行四边形ABCD一定是.14.(5分)(2015秋•许昌校级月考)已知方程x2+2x﹣a=0在(0,1)内有解,则a的取值范围是.15.(5分)(2011秋•温州校级期中)函数f(x)=ax﹣2+loga(x﹣1)+1(a>0,a≠1)的图象必经过点.16.(5分)(2015•合肥二模)矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点,将△ADE沿DE折起,点A,F折起后分别为点A′,F′,得到四棱锥A′﹣BCDE.给出下列几个结论:①A′,B,C,F′四点共面;②EF'∥平面A′BC;③若平面A′DE⊥平面BCDE,则CE⊥A′D;④四棱锥A′﹣BCDE体积的最大值为.其中正确的是(填上所有正确的序号).三、解答题(本大题共6个小题,共70分.请在答题卷上写出必要的解题过程)17.(10分)(2015春•咸宁校级期中)已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=()x.(1)求函数f(x)的解析式;(2)画出函数的图象,根据图象写出函数f(x)的单调区间.18.(12分)(2015秋•许昌校级月考)如图,正方体ABCD﹣A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥,求:(1)三棱锥A′﹣BC′D的表面积与正方体表面积的比值;(2)三棱锥A′﹣BC′D的体积.19.(12分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.20.(12分)(2012•眉山一模)己知函数(Ⅰ)当a=0时,求函数f(x)的值域;(II)若在A内是增函数,求a的取值范围.21.(12分)(2012•东城区二模)如图,矩形AMND所在的平面与直角梯形MBCN所在的平面互相垂直,MB∥NC,MN⊥MB.(Ⅰ)求证:平面AMB∥平面DNC;(Ⅱ)若MC⊥CB,求证BC⊥AC.22.(12分)(2013秋•龙岗区期末)已知指数函数y...