课下层级训练(四十四)圆的方程[A级基础强化训练]1.(2019·山东聊城检测)经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为()A.(x-1)2+y2=1B.(x-1)2+(y-1)2=1C.x2+(y-1)2=1D.(x-1)2+(y-1)2=2【答案】B[由得即所求圆的圆心坐标为(1,1),又由该圆过点(1,0),得其半径为1,故圆的方程为(x-1)2+(y-1)2=1.]2.已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则取最大面积时,该圆的圆心的坐标为()A.(-1,1)B.(-1,0)C.(1,-1)D.(0,-1)【答案】D[由x2+y2+kx+2y+k2=0知所表示圆的半径r==,当k=0时,rmax==1,此时圆的方程为x2+y2+2y=0,即x2+(y+1)2=1,所以圆心为(0,-1).]3.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-B.-C.D.2【答案】A[圆x2+y2-2x-8y+13=0,得圆心坐标为(1,4),所以圆心到直线ax+y-1=0的距离d==1,解得a=-.]4.圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程为()A.x2+y2+10y=0B.x2+y2-10y=0C.x2+y2+10x=0D.x2+y2-10x=0【答案】B[根据题意,设圆心坐标为(0,r),半径为r,则32+(r-1)2=r2,解得r=5,可得圆的方程为x2+y2-10y=0.]5.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为()A.6B.4C.3D.2【答案】B[如图所示,圆心M(3,-1)与直线x=-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.]6.圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,)在圆C内,则m的范围为____________.【答案】0