第3讲直线与圆、圆与圆的位置关系一、选择题1.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为().A.4B.3C.2D.1解析法一(直接法)集合A表示圆,集合B表示一条直线,又圆心(0,0)到直线x+y=1的距离d==<1=r,所以直线与圆相交,故选C.法二(数形结合法)画图可得,故选C.答案C2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是().A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)解析由题意可得,圆的圆心为(a,0),半径为,∴≤,即|a+1|≤2,解得-3≤a≤1.答案C3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足的关系是()A.a2+2a+2b-3=0B.a2+b2+2a+2b+5=0C.a2+2a+2b+5=0D.a2-2a-2b+5=0解析即两圆的公共弦必过(x+1)2+(y+1)2=4的圆心,两圆相减得相交弦的方程为-2(a+1)x-2(b+1)y+a2+1=0,将圆心坐标(-1,-1)代入可得a2+2a+2b+5=0.答案C4.若圆C1:x2+y2+2ax+a2-4=0(a∈R)与圆C2:x2+y2-2by-1+b2=0(b∈R)恰有三条切线,则a+b的最大值为().A.-3B.-3C.3D.3解析易知圆C1的圆心为C1(-a,0),半径为r1=2;圆C2的圆心为C2(0,b),半径为r2=1. 两圆恰有三条切线,∴两圆外切,∴|C1C2|=r1+r2,即a2+b2=9. 2≤,∴a+b≤3(当且仅当a=b=时取“=”),∴a+b的最大值为3.答案D5.若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是().A.B.∪C.D.∪解析C1:(x-1)2+y2=1,C2:y=0或y=mx+m=m(x+1).1当m=0时,C2:y=0,此时C1与C2显然只有两个交点;当m≠0时,要满足题意,需圆(x-1)2+y2=1与直线y=m(x+1)有两交点,当圆与直线相切时,m=±,即直线处于两切线之间时满足题意,则-