第4讲随机事件的概率配套课时作业1.如果事件A与B是互斥事件,且事件A∪B发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为()A.0.64B.0.36C.0.16D.0.84答案C解析设P(A)=x,则P(B)=3x,所以P(A∪B)=P(A)+P(B)=x+3x=0.64,解得x=0.16.故选C.2.(2019·西安五校模拟)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,如果事件“2张全是移动卡”的概率是,那么概率是的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡答案A解析因为事件“2张全是移动卡”的概率是,1-=,所以概率是的事件是事件“2张全是移动卡”的对立事件,也就是“2张不全是移动卡”即“至多有一张移动卡”.故选A.3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A.B.C.D.答案C解析从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P=.4.从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A.B.C.D.答案A解析从1,2,3,4,5这5个数中任取3个数,共有C=10种情况,其中三个数可作为三角形边长的有(2,3,4),(2,4,5),(3,4,5)3种情况,故所求概率P=.选A.5.(2019·湖南长沙模拟)同时掷3枚硬币,至少有1枚正面向上的概率是()A.B.C.D.答案A解析由题意知本题是一个等可能事件的概率,试验发生包含的事件是将1枚硬币连续抛掷三次,共有23=8种结果,满足条件的事件的对立事件是3枚硬币都是背面向上,有1种结果,所以至少一枚正面向上的概率是1-=.故选A.6.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量m=(a,b),n=(1,2),则向量m与向量n不共线的概率是()A.B.C.D.答案B解析若m与n共线,则2a-b=0,而(a,b)的可能性情况为6×6=36个.符合2a=b的有(1,2),(2,4),(3,6)共三个.故共线的概率是=,从而不共线的概率是1-=.7.(2019·云南质检)在2,0,1,8这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A.B.C.D.答案C解析分析题意可知,共有(0,1,2),(0,2,8),(1,2,8),(0,1,8)4种取法,符合题意的取法有2种,故所求概率P=.8.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是()A.B.C.D.答案C解析将两张卡片排在一起组成两位数,则所组成的两位数有12,13,20,21,30,31,共6个,两位数为奇数的有13,21,31,共3个,故所组成的两位数为奇数的概率为=.19.(2019·银川模拟)已知甲、乙两人下棋,和棋的概率为,乙胜的概率为,则甲胜的概率和甲不输的概率分别为()A.,B.,C.,D.,答案C解析10.在运动会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为()A.B.C.D.答案A解析从5名火炬手中任选3人,共有C=10种情况,编号相连的有(1,2,3),(2,3,4),(3,4,5)3种,故所求概率P=.11.(2019·合肥模拟)某城市有连接8个小区A,B,C,D,E,F,G,H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A前往小区H,则他经过市中心O的概率为()A.B.C.D.答案B解析由题意知,此人从小区A前往小区H的所有最短路径为:A→B→C→E→H,A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,A→D→F→G→H,共6条.记“此人经过市中心O”为事件M,则M包含的基本事件为:A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,共4个,所以P(M)==,即他经过市中心O的概率为.12.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=3a-4,则实数a的取值范围为()A.B.C.D.2答案A解析由题意,知即解得