【高考领航】2016届高考数学二轮复习限时训练19直线与圆文(建议用时30分钟)1.(2014·高考福建卷)已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0解析:选D.设所求直线方程为x-y+C=0过点(0,3),∴0-3+C=0,∴C=3,∴所求直线方程为x-y+3=0.2.(2015·高考北京卷)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析:选D.利用两点间的距离公式求圆的半径,从而写出方程.圆的半径r==,圆心坐标为(1,1),所以圆的标准方程为(x-1)2+(y-1)2=2.3.(2016·陕西高三质检)若过点A(0,-1)的直线l与圆x2+(y-3)2=4的圆心的距离记为d,则d的取值范围为()A.[0,4]B.[0,3]C.[0,2]D.[0,1]解析:选A.设圆心为B,则B(0,3),圆心B到直线l的距离d的最大值为|AB|=4,最小值为0,即直线l过圆心,故选A.4.(2016·洛阳市高三统考)在平面直角坐标系内,若曲线C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第四象限内,则实数a的取值范围为()A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(2,+∞)解析:选A.圆C的标准方程为(x+a)2+(y-2a)2=4,所以圆心为(-a,2a),半径r=2,由题意知故选A.5.(2016·北京海淀模拟)已知点A(-1,0),B(cosα,sinα),且|AB|=,则直线AB的方程为()A.y=x+或y=-x-B.y=x+或y=-x-C.y=x+1或y=-x-1D.y=x+或y=-x-解析:选B.|AB|===,所以cosα=,sinα=±,所以kAB=±,即直线AB的方程为y=±(x+1),所以直线AB的方程为y=x+或y=-x-.6.(2015·高考安徽卷)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12解析:选D.方法一:由3x+4y=b得y=-x+,代入x2+y2-2x-2y+1=0,并化简得25x2-2(4+3b)x+b2-8b+16=0,Δ=4(4+3b)2-4×25(b2-8b+16)=0,解得b=2或12.方法二:由圆x2+y2-2x-2y+1=0可知圆心坐标为(1,1),半径为1,所以=1,解得b=2或12.7.(2014·高考湖南卷)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11解析:选C.将圆C2的方程化为标准方程,利用圆心距等于两圆半径之和求解.圆C2的标准方程为(x-3)2+(y-4)2=25-m.又圆C1:x2+y2=1,∴|C1C2|=5.又 两圆外切,∴5=1+,解得m=9.8.(2015·高考福建卷)若直线+=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2B.3C.4D.5解析:选C.将点的坐标代入直线的方程,得到a,b所满足的关系式,再利用基本不等式求最值.将(1,1)代入直线+=1得+=1,a>0,b>0,故a+b=(a+b)=2++≥2+2=4,等号当且仅当a=b时取到,故选C.9.(2016·太原市高三模拟)已知在圆x2+y2-4x+2y=0内,过点E(1,0)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A.3B.6C.4D.2解析:选D.将圆的方程化为标准方程得(x-2)2+(y+1)2=5,圆心坐标为F(2,-1),半径r=,如图,显然过点E的最长弦为过点E的直径,即|AC|=2,而过点E的最短弦为垂直于EF的弦,|EF|==,|BD|=2=2,∴S四边形ABCD=|AC|×|BD|=2.10.(2015·高考全国卷Ⅱ)已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A.B.C.D.解析:选B.先根据已知条件分析△ABC的形状,然后确定外心的位置,最后数形结合计算外心到原点的距离.在坐标系中画出△ABC(如图),利用两点间的距离公式可得|AB|=|AC|=|BC|=2(也可以借助图形直接观察得出),所以△ABC为等边三角形.设BC的中点为D,点E为外心,同时也是重心.所以|AE|=|AD|=,从而|OE|===,故选B.11.设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是()A.[1-,1+]B.(-∞,1-]∪[1+,+∞)C.[2-2,2+2]D.(-∞,2-2]∪[2+2,+∞)解析:选D. 直线与圆相切,∴圆心到直线的距离d=r,d==1,整理得m+n+1=mn,又m,n∈R,有mn≤,∴m+n+1≤,即(m+n)2-4(m+n)-4≥0,解得m...