第7节函数的图象与变换考试要求1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,并运用函数的图象解简单的方程(不等式)问题.知识梳理1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象———――→y=-f(x)的图象;y=f(x)的图象———――→y=f(-x)的图象;y=f(x)的图象——――――→y=-f(-x)的图象;y=ax(a>0,且a≠1)的图象————――→y=logax(a>0,且a≠1)的图象.(3)伸缩变换y=f(x)————————————――→y=f(ax).y=f(x)————————————――→y=Af(x).(4)翻转变换y=f(x)的图象————————――→y=|f(x)|的图象;y=f(x)的图象——————————――→y=f(|x|)的图象.[常用结论与易错提醒]1.图象左右平移变换是针对自变量x而言的,如从f(-2x)的图象到f(-2x+1)的图象是向右平移个单位,先作如下变形f(-2x+1)=f,可避免出错.2.明确一个函数的图象关于y轴对称与两个函数的图象关于y轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.诊断自测1.判断下列说法的正误.(1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.()(2)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.()(3)当x∈(0,+∞)时,函数y=f(|x|)的图象与y=|f(x)|的图象相同.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()解析(1)y=f(-x)的图象向左平移1个单位得到y=f(-1-x)的图象,故(1)错.(2)两种说法有本质不同,前者为函数的图象自身关于y轴对称,后者是两个函数的图象关于y轴对称,故(2)错.(3)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两函数图象不同,故(3)错.答案(1)×(2)×(3)×(4)√2.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)的解析式为()A.f(x)=ex+1B.f(x)=ex-1C.f(x)=e-x+1D.f(x)=e-x-1解析依题意,与曲线y=ex关于y轴对称的曲线是y=e-x,于是f(x)相当于y=e-x向左平移1个单位的结果,∴f(x)=e-(x+1)=e-x-1.答案D3.(2019·浙江名师预测卷)函数y=(ex-e-x)sin|2x|的图象可能是()解析由题可知函数f(x)=(ex-e-x)sin|2x|是奇函数,故排除B,C;当x∈时,f(x)>0,故排除D,故选A.答案A4.若函数y=f(x)在x∈[-2,2]的图象如图所示,则当x∈[-2,2]时,f(x)+f(-x)=________.解析由于y=f(x)的图象关于原点对称,∴f(x)+f(-x)=f(x)-f(x)=0.答案05.若关于x的方程|x|=a-x只有一个解,则实数a的取值范围是________.解析在同一个坐标系中画出函数y=|x|与y=a-x的图象,如图所示.由图象知当a>0时,方程|x|=a-x只有一个解.答案(0,+∞)6.已知函数f(x)=2x,若函数g(x)的图象与f(x)的图象关于x轴对称,则g(x)=________;若把函数f(x)的图象向左平移1个单位,再向下平移4个单位后,所得函数的解析式为h(x)=________.解析 g(x)的图象与函数f(x)=2x的图象关于x轴对称,∴g(x)=-2x.把f(x)=2x的图象向左平移1个单位,得m(x)=2x+1的图象,再向下平移4个单位,得h(x)=2x+1-4的图象.答案-2x2x+1-4考点一作函数的图象【例1】作出下列函数的图象:(1)y=;(2)y=|log2(x+1)|;(3)y=;(4)y=x2-2|x|-1.解(1)先作出y=的图象,保留y=图象中x≥0的部分,再作出y=的图象中x>0部分关于y轴的对称部分,即得y=的图象,如图①实线部分.(2)将函数y=log2x的图象向左平移一个单位,再将x轴下方的部分沿x轴翻折上去,即可得到函数y=|log2(x+1)|的图象,如图②.(3) y=2+,故函数图象可由y=图象向右平移1个单位,再向上平移2个单位即得,如图③.(4) ...