2018年高考数学一轮复习第九章计数原理与概率、随机变量及其分布第58讲随机事件的概率实战演练理1.(2014·新课标全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为(D)A.B.C.D.解析:由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日有1种情况,故周六、周日都有同学参加公益活动的概率为P===,故选D.2.(2017·陕西模拟)甲乙两人一起去旅游景点,他们约定,各自独自地从1到6号景点中任选4个进行游览,每个景点参观1个小时,则最后一小时他们在同一个景点的概率是(D)A.B.C.D.解析:甲乙两人任选4个景点共有方法AA种,而最后一小时他们在同一个景点的情况有CAA种,所求概率为P==.3.(2015·江苏卷)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为.解析:记两只黄球为黄A与黄B,从而所有的摸球结果为:白、红,红、黄A,红、黄B,白、黄A,白、黄B,黄A、黄B,共6种情况,其中颜色不同的有5种情况,则所求概率P=.4.(2016·北京卷)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):A班66.577.58B班6789101112C班34.567.5910.51213.5(1)试估计C班的学生人数;(2)从A班和C班抽出的学生中,各随机抽取一人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A,B,C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(写出结论不要求证明).解析:(1)由题意知,抽出的20名学生中,来自C班的学生有8名.根据分层抽样方法,C班的学生人数估计为100×=40.(2)设事件Ai为“甲是现有样本中A班的第i个人”,i=1,2,…,5,事件Cj为“乙是现有样本中C班的第j个人”,j=1,2,…,8.由题意可知,P(Ai)=,i=1,2,…,5;P(Cj)=,j=1,2,…,8.P(AiCj)=P(Ai)P(Cj)=×=,i=1,2,…,5,j=1,2,…,8.设事件E为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知,E=A1C1∪A1C2∪A2C1∪A2C2∪A2C3∪A3C1∪A3C2∪A3C3∪A4C1∪A4C2∪A4C3∪A5C1∪A5C2∪A5C3∪A5C4.因此P(E)=P(A1C1)+P(A1C2)+P(A2C1)+P(A2C2)+P(A2C3)+P(A3C1)+P(A3C2)+P(A3C3)+P(A4C1)+P(A4C2)+P(A4C3)+P(A5C1)+P(A5C2)+P(A5C3)+P(A5C4)=15×=.1(3)μ1<μ0.2