【优化探究】2017届高考数学一轮复习第六章第五节合情推理与演绎推理课时作业理新人教A版A组考点能力演练1.(2016·合肥模拟)正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析:因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.答案:C2.在等差数列{an}中,若an>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{bn}中,若bn>0,公比q>1,则b4,b5,b7,b8的一个不等关系是()A.b4+b8>b5+b7B.b4+b8b5+b8D.b5·b80,∴b4+b8>b5+b7,故选A.答案:A3.(2015·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第()A.22项B.23项C.24项D.25项解析:两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项.故选C.答案:C4.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是()A.(7,5)B.(5,7)C.(2,10)D.(10,1)解析:依题意,把“整数对”的和相同的分为一组,不难得知第n组中每个“整数对”的和均为n+1,且第n组共有n个“整数对”,这样的前n组一共有个“整数对”,注意到<60<,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7),选B.答案:B5.如图所示,椭圆中心在坐标原点,F为左焦点,当FB⊥AB时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于()A.B.C.-1D.+1解析:根据“黄金椭圆”的性质是FB⊥AB,可以得到“黄金双曲线”也满足这个性质,设“黄金双曲线”方程为-=1,则B(0,b),F(-c,0),A(a,0).在“黄金双曲线”中, FB⊥AB,∴FB·AB=0.又FB=(c,b),AB=(-a,b).∴b2=ac.而b2=c2-a2,∴c2-a2=ac.在等号两边同除以a2得e=,故选A.答案:A6.(2016·厦门模拟)已知等差数列{an}中,有=,则在等比数列{bn}中,会有类似的结论:___________________________________________.解析:由等比数列的性质可知b1b30=b2b29=…=b11b20,∴=.答案:=7.(2016·陕西一检)观察下列式子:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…,由以上可推测出一个一般性结论:对于n∈N*,1+2+…+n+…+2+1=________.解析: 1=12,1+2+1=22,1+2+3+2+1=32,1+2+3+4+3+2+1=42,…,∴归纳可得1+2+…+n+…+2+1=n2.答案:n28.已知x>0,x+≥2=2,x+=++≥3=3,x+=+++≥4=4,….在x>0的条件下请根据上述不等式归纳出一个一般性的不等式________.解析:根据题意,分析所给不等式的变形过程可得,先对左式变形,再利用基本不等式化简,消去根号,得到右式,则x+=++…++≥(n+1)·=n+1(n∈N*).答案:x+≥n+1(n∈N*)9.给出下面的数表序列:表1表2表3113135…44812其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解:表4为13574812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.10.如图所示,点P为斜三棱柱ABC-A1B1C1的侧棱BB1上一点,PM⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.(1)求证:CC1⊥MN;(2)在任意三角形DEF中有余弦定理:DE2=DF2+EF2-2DF·EFcos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.解:(1)证明:因为PM⊥B...