【大高考】2017版高考数学一轮总复习第9章平面解析几何第4节双曲线及其性质高考AB卷理双曲线的定义及标准方程1.(2016·全国Ⅰ,5)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(-1,3)B.(-1,)C.(0,3)D.(0,)解析 方程-=1表示双曲线,∴(m2+n)·(3m2-n)>0,解得-m20)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.mD.3m解析 双曲线的方程为-=1,焦点F到一条渐近线的距离为.答案A6.(2014·大纲全国,9)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上.若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.解析由双曲线的定义知|AF1|-|AF2|=2a,又|AF1|=2|AF2|,∴|AF1|=4a,|AF2|=2a. e==2,∴c=2a,∴|F1F2|=4a.∴cos∠AF2F1===,故选A.答案A7.(2013·大纲全国,21)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.(1)解由题设知=3,即=9,故b2=8a2.所以C的方程为8x2-y2=8a2.将y=2代入上式,求得x=±.由题设知,2=,解得a2=1.所以a=1,b=2.(2)证明由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),|k|<2,代入①并化简得(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=,x1·x2=.于是|AF1|===-(3x1+1),|BF1|===3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=-.故=-,解得k2=,从而x1·x2=-.由于|AF2|===1-3x1,|BF2|===3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16.因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.双曲线的定义及标准方程1.(2015·福建,3)若双曲线E:-=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11B.9C.5D.3解析由双曲线定义||PF2|-|PF1||=2a, |PF1|=3,∴P在左支上, a=3,∴|PF2|-|PF1|=6,∴|PF2|=9,故选B.答案B2.(2015·安徽,4)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2-=1B.-y2=1C.-x2=1D.y2-=1解析由双曲线性质知A、B项双曲线焦点在x轴上,不合题意;C、D项双曲线焦点均在y轴上,但D项渐近线为y=±x,只有C符合,故选C.答案C3.(2015·广东,7)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.-=1B.-=1C.-=1D.-=1解析因为所求双曲线的右焦点为F2(5,0)且离心率为e==,所以c=5,a=4,b2=c2-a2=9,所以所求双曲线方程为-=1,故选B.答案B4.(2014·天津,5)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在...