2015-2016学年黑龙江省哈尔滨六中高二(上)学业水平测试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1个B.2个C.4个D.8个2.若a、b、c∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.a(c2+1)>b(c2+1)D.a|c|>b|c|3.设m,n是两条不同直线,α,β是两个不同的平面,下列命题正确的是()A.m∥α,n∥β且α∥β,则m∥nB.m⊥α,n⊥β且α⊥β,则m⊥nC.m⊥α,n⊂β,m⊥n,则α⊥βD.m⊂α,n⊂α,m∥β,n∥β,则α∥β4.函数f(x)=(x2﹣2x﹣3)的单调减区间是()A.(3,+∞)B.(1,+∞)C.(﹣∞,1)D.(﹣∞,﹣1)5.化简=()A.1B.2C.D.﹣16.已知非零向量,满足||=||,(﹣)⊥,则向量与的夹角大小为()A.30°B.60°C.120°D.150°17.在等比数列中{an}中,若a3a5a7a9a11=243,则的值为()A.9B.1C.2D.38.高一年级某班63人,要选一名学生做代表,每名学生当选是等可能的,若“选出代表是女生”的概率是“选出代表是男生”的概率的,这个班的女生人数为()A.20B.25C.30D.359.若实数x、y满足=1,则x2+2y2有()A.最大值3+2B.最小值3+2C.最大值6D.最小值610.某程序框图如图所示,该程序运行后输出的k的值是()A.4B.5C.6D.711.已知直线3x+2y﹣3=0与6x+my+7=0互相平行,则它们之间的距离是()A.4B.C.D.212.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.B.C.2000cm3D.4000cm3二、填空题:本大题共4小题,每小题5分,共20分.将答案写在答题卡上相应的位置13.展开式中只有第六项的二项式系数最大,则展开式中的常数项等于.14.已知Sn是等差数列{an}的前n项和,S3=6,an﹣2+an=16,若Sn=50,则n的值为.15.已知变量x、y满足,则z=2x+y的最大值.16.过圆x2+y2﹣2x+4y﹣4=0内一点M(3,0)作圆的割线l,使它被该圆截得的线段最短,则直线l的方程是.三、解答题:本大题共6小题,共52分.解答时应写出必要的文字说明、证明过程或演算步骤17.等差数列{an}的前n项和为Sn,已知a2=1,S10=45(Ⅰ)求数列{an}的通项公式;3(Ⅱ)若数列{bn}满足bn=,求数列{bn}的前n项和Tn.18.已知在△ABC中,a,b,c分别是角A,B,C所对的边,且.①求角A的大小.②若.19.某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列.(1)求第五、六组的频数,补全频率分布直方图;(2)若每组数据用该组区间中点值(例如区间[70,80)的中点值是75作为代表,试估计该校高一学生历史成绩的平均分;(3)估计该校高一学生历史成绩在70~100分范围内的人数.20.如图所示,直三棱柱ABC﹣A1B1C1的各条棱长均为a,D是侧棱CC1的中点.(1)求证:平面AB1D⊥平面ABB1A1;(2)求异面直线AB1与BC所成角的余弦值;(3)求平面AB1D与平面ABC所成二面角(锐角)的大小.421.已知定义域为R的函数是奇函数.(1)求实数a,b的值;(2)判断f(x)在(﹣∞,+∞)上的单调性;(3)若f(k•3x)+f(3x﹣9x+2)>0对任意x≥1恒成立,求k的取值范围.22.已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.52015-2016学年黑龙江省哈尔滨六中高二(上)学业水平测试数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是()A.1个B.2个C.4个D.8个【考点】子集与真子集.【专题】集合.【分析】通过已知条件便知,3是B的元素,1,2可以是集合的元素,所以B的可能情况为:B={3},{1,3},{2,3},{1,2,3},所以集合B的...