电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学60天冲刺圆锥曲线综合应用VIP免费

高考数学60天冲刺圆锥曲线综合应用_第1页
1/25
高考数学60天冲刺圆锥曲线综合应用_第2页
2/25
高考数学60天冲刺圆锥曲线综合应用_第3页
3/25
高考60天冲刺——圆锥曲线综合应用1.点A、B分别是以双曲线的焦点为顶点,顶点为焦点的椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆C上,且位于x轴上方,(1)求椭圆C的的方程;(2)求点P的坐标;(3)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值。2已知在平面直角坐标系中,向量,且.(I)设的取值范围;(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程.3.设A、B是椭圆3x2+y2=λ上的两点,点N(1,3)是线段AB的中点.(1)确定λ的取值范围,使直线AB存在,并求直线AB的方程.(2)线段AB的垂直平分线与椭圆相交于C,D两点,求线段CD的中点M的坐标(3)试判断是否存在这样的λ,使得A、B、C、D四点在同一个圆上?并说明理由.4.设是抛物线上相异两点,且,直线与轴相交于.(Ⅰ)若到轴的距离的积为,求的值;(Ⅱ)若为已知常数,在轴上,是否存在异于的一点,使得直线与抛物线的另一交点为,而直线与轴xyOPQREFT相交于,且有,若存在,求出点的坐标(用表示),若不存在,说明理由.5.已知点A、B的坐标分别是,.直线相交于点M,且它们的斜率之积为-2.(Ⅰ)求动点M的轨迹方程;(Ⅱ)若过点的直线交动点M的轨迹于C、D两点,且N为线段CD的中点,求直线的方程.6.已知,点在轴上,点在轴的正半轴,点在直线上,且满足,,.(Ⅰ)当点在轴上移动时,求动点的轨迹方程;(Ⅱ)过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.7.已知点C为圆的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若直线与(Ⅰ)中所求点Q的轨迹交于不同两点F,H,O是坐标原点,且,求△FOH的面积BANMF2F1yxo8.如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的直线与椭圆相交M、N两点,且|MN|=1.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左顶点为A,下顶点为B,动点P满足,()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.9.已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线:()与椭圆交于、两点,证明直线与直线的交点在直线上.10.如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点。(Ⅰ)设点P分有向线段所成的比为λ,证明(Ⅱ)设直线AB的方程是x—2y+12=0,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程。11.已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点。(1)求双曲线的方程;(2)若直线与双曲线C2恒有两个不同的交点A和B,且(其中O为原点),求的范围。12.如图,过抛物线的对称轴上任一点作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点.⑴.设点P满足(为实数),证明:;⑵.设直线AB的方程是,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.13.一束光线从点出发,经直线上一点反射后,恰好穿过点.(Ⅰ)求点关于直线的对称点的坐标;(Ⅱ)求以、为焦点且过点的椭圆的方程;(Ⅲ)设直线与椭圆的两条准线分别交于、两点,点为线段上的动点,求点到的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐ABPOQxy标.14.已知平面上一定点和一定直线P为该平面上一动点,作垂足为,.(1)问点P在什么曲线上?并求出该曲线方程;(2)点O是坐标原点,两点在点P的轨迹上,若求的取值范围.15.如图,已知E、F为平面上的两个定点,,且,·,(G为动点,P是HP和GF的交点)(1)建立适当的平面直角坐标系求出点的轨迹方程;(2)若点的轨迹上存在两个不同的点、,且线段的中垂线与(或的延长线)相交于一点,则<(为的中点).GFPHE16.已知动圆过定点,且与直线相切.(1)求动圆的圆心轨迹的方程;(2)是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.17.已知若动点P满足(1)求动点P的轨迹方C的方程;(2)设Q是曲线C上任意一点,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学60天冲刺圆锥曲线综合应用

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部