第5节古典概型与几何概型【选题明细表】知识点、方法题号古典概型1,2,3,5,6,7,10,12几何概型4,8,9,11,14古典概型与几何概型的综合13基础巩固(时间:30分钟)1.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量p=(m,n),q=(3,6).则向量p与q共线的概率为(D)(A)(B)(C)(D)解析:由题意可得,基本事件(m,n)(m,n=1,2,…,6)的个数=6×6=36.若p∥q,则6m-3n=0,得到n=2m.满足此条件的共有(1,2),(2,4),(3,6)三个基本事件.因此向量p与q共线的概率为P==.故选D.2.(2017·黑龙江大庆市二模)男女生共8人,从中任选3人,出现2个男生,1个女生的概率为,则其中女生人数是(C)(A)2人(B)3人(C)2人或3人(D)4人解析:设女生人数是x人,则男生(8-x)人,又因为从中任选3人,出现2个男生,1个女生的概率为,所以=,所以x=2或3.故选C.3.(2017·兰州调研)从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为(B)(A)(B)(C)(D)解析:构成的两位数共有=20个,其中大于40的两位数有=8个,所以所求概率为=,故选B.4.(2017·湖南湘西州一模)已知f(x)=在区间(0,4)内任取一个为x,则不等式log2x-(lo4x-1)f(log3x+1)≤的概率为(B)(A)(B)(C)(D)解析:由题意,log3x+1≥1且log2x-(lo4x-1)≤,或0