精品文档九年级相似三角形和全等三角形分类相似三角形证明方法方法一:直接寻求相似三角形只要根据题目给定的条件寻找出线段成比例,或者角相等利用判定定理直接找出来.,则△FE、DC的延长线上,AG交BC、BD于点ABCD例1、如图:点G在平行四边形的边AD24F。EGC∽△∽△EABAGD3CB1EG°,BD是角平分线,、已知△ABC中,AB=AC,∠A=36例2BCDABC∽△求证:△方法二:利用中间线段代换当要证明的结论中的一条线段与其他线段之间的关系难以确定时我们可以利用等线段代换,从而容易找到相应的关系。AFEAD=BE,求证:AC=BCDF在AC上截取AD,在CB延长线上截取BE,使ABC例1、△中,DFECKB0的,交BADM⊥BC于点E是:例2已知:如图,在△ABC中,∠BAC=90,MBC的中点,D。延长线于点D2MEAEA2);((1)MA=MD2ME求证:E12MDAD2BCM,这种具有特殊关系(有一个公共角和一条公共边)的三角形MDA△MAE∽△(2)本例的关键是证明的相似,在解题中应用很多,应从下面两个方面深刻理解:C2AB=AD。AC2如图,如果∠1=∠,那么△ABD∽△ACB,命题112。∽△ACB,∠1=∠2ABD命题2如图,如果AB=ADAC,那么△BADFB。::,求证:于,交于交为任一直线,为中线,中,△:例3如图ABCADCFCFADEABFAEED=2AF精品文档.精品文档方法三:证明比例式或等积式的主要方法有“三点定形法”..横向定型法1BCAB欲证的三个顶,横向观察,比例式中的分子的两条线段是和,三个字母找到一幕中BEF△ABBCBFBE此只需证.EBF△ABC∽△因点.2.纵向定型法DEAB欲证中的三个字母恰为的顶点;右边的比,纵向观察,比例式左边的比和CA,B,ABC△ABBCEFBC.两条线段是和中的三个字母恰为的三个顶点.因此只需证FE,D,DEF△DEF∽△△ABCEFDE3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行在证明比例式时,常用到中间比.变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.比例中项式的证明,通常涉及到与公共边有关的相似问题。这类问题的典型模型是射影定理模型,模型的特征和结论要熟练掌握和透彻理解.,另一边化为几个比值和的形式,然后对比值进行1倒数式的证明,往往需要先进行变形,将等式的一边化为等量代换,进而证明之.,等比代换,等积代换,将复合式转化为复合式的证明比较复杂.通常需要进行等线代换(对线段进行等量代换)基本的比例式或等积式,然后进行证明.【例题】“三点定型”法加“三点定型”一类:直接利用“左看、右看、上看、下看”分析(第一种题型主要是通过观察就用三点定型中横向定形法找出对应线段成比例的)20。求证:ACAB=AD?CD例1,已知:∠ACB=90,⊥ABPC=BM两点。求证:NBP?的垂直平分线交APAB、AC于M、为已知:等边三角形例2,ABC中,PBC上任一点,?CN加“三点定形”时,如果有相等的线段时,可用相等的线段去二类:当不能直接用“左看、右看、上看、下看”替换。2CF=BF。求证:的延长线交于与垂直平分,平分∠已知;,例1ADBACEFADBCFDF?精品文档.精品文档02FC为正方形。求证:EF=BE?已知;在Rt△ABC中,∠A=90,四边形DEFG例2,,又没有相等的线段可以替换时,可以找中间比或中间量来转化搭桥,充分体现三类:既不能直接用“三点定形”了转化的思想在数学中的应用。2=OA.OEOC交CA的延长线于点E.求证:OABCD例1,已知:梯形中,AD//BC,AC与BD相交于点,作BE//CD,的延的延长线与BA交于DG⊥BC,与CEF,GD是△,已知:例2BD、CEABC的两个高,。H长线交于2求证:GD=GF?GH一、等积式、比例式的证明:等积式、比例式的证明是相似形一章中常见题型。因为这种问题变化很多,同学们常常感到困难。但是,如果我们掌握了解决这类问题的基本规律,就能找到解题的思路。(一)遇到等积式(或比例式)时,先看是否能找到相似三角形。等积式可根据比例的基本性质改写成比例式,在比例式各边的四个字母中如有三个不重复的字母,就可找出相似三角形。精品文档.精品文档02。。求证:CD=DE·DF,AB的垂直平分线交AB于D,交BC延长线于F已知:如图,△例1、ABC中,∠ACB=90(二)若由求证的等积式或比例式中找不到三角形或找到的三角...