电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 限时集训(七)函数的奇偶性与周期性 理 新人教A版VIP免费

高考数学一轮复习 限时集训(七)函数的奇偶性与周期性 理 新人教A版_第1页
1/3
高考数学一轮复习 限时集训(七)函数的奇偶性与周期性 理 新人教A版_第2页
2/3
高考数学一轮复习 限时集训(七)函数的奇偶性与周期性 理 新人教A版_第3页
3/3
限时集训(七)函数的奇偶性与周期性(限时:45分钟满分:81分)一、选择题(本大题共6小题,每小题5分,共30分)1.(·陕西高考)下列函数中,既是奇函数又是增函数的为()A.y=x+1B.y=-x3C.y=D.y=x|x|2.已知f(x)是定义在R上的奇函数,且满足f(x+4)=f(x),则f(8)=()A.0B.1C.2D.33.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集为()A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)4.已知函数f(x)=则该函数是()A.偶函数,且单调递增B.偶函数,且单调递减C.奇函数,且单调递增D.奇函数,且单调递减5.(·广州模拟)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)0在[-1,3]上的解集为()A.(1,3)B.(-1,1)C.(-1,0)∪(1,3)D.(-1,0)∪(0,1)二、填空题(本大题共3小题,每小题5分,共15分)7.若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________.8.若偶函数y=f(x)为R上的周期为6的周期函数,且满足f(x)=(x+1)(x-a)(-3≤x≤3),则f(-6)等于________.9.(·徐州模拟)设函数f(x)是定义在R上周期为3的奇函数,若f(1)<1,f(2)=,则a的取值范围是________.三、解答题(本大题共3小题,每小题12分,共36分)10.函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(1)=0,求不等式fx<0的解集.11.已知函数f(x)=x2+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[2,+∞)上为增函数,求实数a的取值范围.12.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(-∞,+∞)内函数f(x)的单调增(或减)区间.答案限时集训(七)函数的奇偶性与周期性1.D2.A3.B4.C5.D6.C7.08.-19.(-∞,-1)∪(0,+∞)10.解:∵y=f(x)是奇函数,∴f(-1)=-f(1)=0.又∵y=f(x)在(0,+∞)上是增函数,∴y=f(x)在(-∞,0)上是增函数,若fx<0=f(1),∴即00,即x1x2(x1+x2)>a恒成立.又∵x1+x2>4,x1x2>4,∴x1x2(x1+x2)>16.∴a的取值范围是(-∞,16].12.解:(1)由f(x+2)=-f(x)得,f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,所以f(π)=f(π-4)=-f(4-π)=-(4-π)=π-4.(2)由f(x)是奇函数与f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).故知函数y=f(x)的图象关于直线x=1对称.又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则-1≤x≤0时f(x)=x,则f(x)的图象如图所示.当-4≤x≤4时,设f(x)的图象与x轴围成的图形面积为S,则S=4S△OAB=4×=4.(3)函数f(x)的单调递增区间为[4k-1,4k+1](k∈Z),单调递减区间为[4k+1,4k+3](k∈Z).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 限时集训(七)函数的奇偶性与周期性 理 新人教A版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部