理科数学平面向量第一部分平面向量的概念及线性运算1.向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为零的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.【基础练习】1.判断正误(在括号内打“√”或“×”)(1)零向量与任意向量平行.()(2)若a∥b,b∥c,则a∥c.()(3)向量AB与向量CD是共线向量,则A,B,C,D四点在一条直线上.()(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.()(5)在△ABC中,D是BC中点,则AD=(AC+AB).()2.给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量AB与BA相等.则所有正确命题的序号是()1理科数学平面向量A.①B.③C.①③D.①②3.(2017·枣庄模拟)设D为△ABC所在平面内一点,AD=-AB+AC,若BC=λDC(λ∈R),则λ=()A.2B.3C.-2D.-34.(2015·全国Ⅱ卷)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=____________.5.(必修4P92A12改编)已知▱ABCD的对角线AC和BD相交于O,且OA=a,OB=b,则DC=______,BC=________(用a,b表示).6.(2017·嘉兴七校联考)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1=________,λ2=________.考点一平面向量的概念【例1】下列命题中,不正确的是________(填序号).①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则“AB=DC”是“四边形ABCD为平行四边形”的充要条件;③若a=b,b=c,则a=c.【训练1】下列命题中,正确的是________(填序号).①有向线段就是向量,向量就是有向线段;②向量a与向量b平行,则a与b的方向相同或相反;③两个向量不能比较大小,但它们的模能比较大小.解析①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a与b中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.答案③考点二平面向量的线性运算【例2】(2017·潍坊模拟)在△ABC中,P,Q分别是AB,BC的三等分点,且AP=AB,BQ=BC.若AB=a,AC=b,则PQ=()A.a+bB.-a+bC.a-bD.-a-b【训练2】(1)如图,正方形ABCD中,点E是DC的中点,点F是BC的一个靠近B点的三等分点,那么EF等于()A.AB-ADB.AB+ADC.AB+DAD.AB-AD考点三共线向量定理及其应用【例3】设两个非零向量a与b不共线.(1)若AB=a+b,BC=2a+8b,CD=3(a-b).求证:A,B,D三点共线;(2)试确定实数k,使ka+b和a+kb共线.【训练3】已知向量AB=a+3b,BC=5a+3b,CD=-3a+3b,则()A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线第二部分平面向量基本定理与坐标表示1.平面向量的基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对2理科数学平面向量实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.3.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a=(x1,y1),b=(x2,y2...