第1讲实数基础知识点:一、实数的分类:无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数1、有理数:任何一个有理数总可以写成qp的形式,其中p、q是互质的整数,这是有理数的重要特征。2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin°等。3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。(1)实数a的相反数是-a;(2)a和b互为相反数a+b=02、倒数:(1)实数a(a≠0)的倒数是a1;(2)a和b互为倒数1ab;(3)注意0没有倒数3、绝对值:(1)一个数a的绝对值有以下三种情况:0,0,00,aaaaaa(2)实数的绝对值是一个非负数,数轴上看,一个实数的绝对值,数轴上表示这个数的点到原点的距离。(3)去掉绝对值符号必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。(3)立方根:3a叫实数a的立方根。(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。3、作差法和作商法。五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。2、减法:减去一个数等于加上这个数的相反数。3、乘法:1(1)两数相乘,同号取正,异号取负,并把绝对值相乘。(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。(2)除以一个数等于乘以这个数的倒数。(3)0除以任何数都等于0,0不能做被除数。5、乘方与开方:乘方与开方互为逆运算。6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。六、有效数字和科学记数法1、科学记数法:设N>0,则N=a×n10(其中1≤a<10,n为整数)。2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。典型例题:1.2的倒数是.2的相反数是.3的绝对值是2.若向南走2m记作2m,则向北走3m记作m.3.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(毫米2),这个数用科学记数法表示为()A.7×10-6B.0.7×10-6C.7×10-7D.70×10-84.在“05,3.14,33,23,cos600sin450”这6个数中,无理数的个数是()A.2个B.3个C.4个D.5个6.下列说法正确的是()A.近似数3.9×103精确到十分位B.按科学计数法表示的数8.04×105其原数是80400C.把数50430保留2个有效数字得5.0×104.D.用四舍五入得到的近似数8.1780精确到0.0017.-3的相反数是______,-12...