圆锥曲线知识点回顾1.椭圆的性质条件{M|MF1|+|MF2|=2a,2a>|F1F2|}{M||MF|Ml=|MF|Ml=e0e1}1122点到的距离点到的距离,<<标准方程xaybab222210()>>xbyaab222210()>>顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴对称轴:x轴,y轴.长轴长|A1A2|=2a,短轴长|B1B2|=2b焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c(c>0),c2=a2-b2离心率e(0e1)=<<ca准线方程ll12xx:=;:=acac22ll12yy:=;:=acac22焦点半径|MF1|=a+ex0,|MF2|=a-ex0|MF1|=a+ey0,|MF2|=a-ey0点和椭圆的关系>外在椭圆上<内xaybxy022022001(,)(k为切线斜率),ykx=±akb222(k为切线斜率),ykx=±bka222切线方程xxayyb0202+=1(x0,y0)为切点xxbyya0202+=1(x0,y0)为切点切点弦方程(x0,y0)在椭圆外xxayyb0202+=1(x0,y0)在椭圆外xxbyya0202+=1弦长公式|xx|1+k|yy|1+1k212122-或-其中(x1,y1),(x2,y2)为割弦端点坐标,k为割弦所在直线的斜率e越大椭圆越扁;e越小椭圆越圆。2.双曲线的性质条件P={M|MF1|-|MF2|=2a,a>0,2a<|F1F2|}.P{M||MF|Ml|MF|Mlee1}1122=点到的距离=点到的距离=,>.标准方程xayb2222-=>,>1(a0b0)yaxb2222-=>,>1(a0b0)顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴对称轴:x轴,y轴,实轴长|A1A2|=2a,虚轴长|B1B2|=2b焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c(c>0),c2=a2+b2离心率e(e1)=>ca准线方程ll12xx:=-;:=acac22ll12yy:=-;:=acac22渐近线方程yx(0)=±或-=baxayb2222yx(0)=±或-=abyaxb2222共渐近线的双曲线系方程xayb2222-=≠k(k0)yaxb2222-=≠k(k0)焦点半径|MF1|=ex0+a,|MF2|=ex0-a|MF1|=ey0+a,|MF2|=ey0-aykx=±akb222(k为切线斜率)kk>或<-babaykx=±bka222(k为切线斜率)kk>或<-ababxxayyb0202-=1((x0,y0)为切点yyaxxb0202-=1((x0,y0)为切点切线方程xyaa((xy)2200=的切线方程:=,为切点xyyx002切点弦方程(x0,y0)在双曲线外xxayyb0202-=1(x0,y0)在双曲线外yyaxxb0202-=1弦长公式|xx|1+k|yy|1+1k212122-或-其中(x1,y1),(x2,y2)为割弦端点坐标,k为割弦所在直线的斜率(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。注意:①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表示两条射线;③当时,不表示任何图形;④两定点叫做双曲线的焦点,叫做焦距。(2)等轴双曲线:定义:实轴和虚轴等长的双曲线叫做等轴双曲线。定义式:;e越大,双曲线开口越宽;e越小,双曲线开口越窄。3.抛物线中的常用结论标准方程图形焦点坐标准线方程oFxyloxyFlxyoFl范围对称性轴轴轴轴顶点离心率(4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.