课时达标检测(五十七)古典概型与几何概型[练基础小题——强化运算能力]1.(2017·武汉模拟)在区间[0,1]上随机取一个数x,则事件“log0.5(4x-3)≥0”发生的概率为()A.B.C.D.解析:选D因为log0.5(4x-3)≥0,所以0<4x-3≤1,即0,b>0,包含的基本事件有(2,1),(2,2),共2个,根据古典概型的概率计算公式可知直线y=kx+b不经过第四象限的概率P==,故选B.3.如图,长方形的四个顶点为O(0,0),A(4,0),B(4,2),C(0,2),曲线y=经过点B.小军同学在学做电子线路板时有一电子元件随机落入长方形OABC中,则该电子元件落在图中阴影区域的概率是()A.B.C.D.解析:选C由题意可知S阴=dx=x=,S长方形=4×2=8,则所求概率P===.4.(2017·商丘模拟)已知P是△ABC所在平面内一点,++2=0,现将一粒豆随机撒在△ABC内,则黄豆落在△PBC内的概率是()A.B.C.D.解析:选C如图所示,设点M是BC边的中点,因为++2=0,所以点P是中线AM的中点,所以黄豆落在△PBC内的概率P==,故选C.5.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn发生的概率最大,则n的所有可能值为()A.3B.4C.2和5D.3和4解析:选D分别从集合A和B中随机取出一个数,确定平面上的一个点P(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6种情况,a+b=2的有1种情况,a+b=3的有2种情况,a+b=4的有2种情况,a+b=5的有1种情况,所以可知若事件Cn发生的概率最大,则n的所有可能值为3和4.6.某公司有一批专业技术人员,其中年龄在35~50岁的本科生和研究生分别有30人和20人,现用分层抽样法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体,从中任意抽取3人,则至少有1人为研究生的概率为()A.B.C.D.解析:选D设容量为5的样本中研究生的人数为m,由题意可得=,解得m=2,则样本中有研究生2人,分别记为A,B,本科生3人,分别记为a...