【大高考】2017版高考数学一轮总复习第9章平面解析几何第2节圆与方程及直线与圆的位置关系高考AB卷理圆的方程1.(2015·全国Ⅰ,14)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.解析由题意知圆过(4,0),(0,2),(0,-2)三点,(4,0),(0,-2)两点的垂直平分线方程为y+1=-2(x-2),令y=0,解得x=,圆心为,半径为.故圆的标准方程为+y2=.答案+y2=直线与圆,圆与圆的位置关系2.(2016·全国Ⅱ,4)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-B.-C.D.2解析由圆的方程x2+y2-2x-8y+13=0得圆心坐标为(1,4),由点到直线的距离公式得d==1,解之得a=-.答案A3.(2015·全国Ⅱ,7)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M、N两点,则|MN|=()A.2B.8C.4D.10解析由已知,得AB=(3,-1),BC=(-3,-9),则AB·BC=3×(-3)+(-1)×(-9)=0,所以AB⊥BC,即AB⊥BC,故过三点A、B、C的圆以AC为直径,得其方程为(x-1)2+(y+2)2=25,令x=0得(y+2)2=24,解得y1=-2-2,y2=-2+2,所以|MN|=|y1-y2|=4,选C.答案C4.(2016·全国Ⅲ,16)已知直线l:mx+y+3m-=0与圆x2+y2=12交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=________.解析设AB的中点为M,由题意知,圆的半径R=2,AB=2,所以OM=3,解得m=-,由解得A(-3,),B(0,2),则AC的直线方程为y-=-(x+3),BD的直线方程为y-2=-x,令y=0,解得C(-2,0),D(2,0),所以|CD|=4.答案45.(2014·全国Ⅱ,16)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.解析由题意可知M在直线y=1上运动,设直线y=1与圆x2+y2=1相切于点P(0,1).当x0=0即点M与点P重合时,显然圆上存在点N(±1,0)符合要求;当x0≠0时,过M作圆的切线,切点之一为点P,此时对于圆上任意一点N,都有∠OMN≤∠OMP,故要存在∠OMN=45°,只需∠OMP≥45°.特别地,当∠OMP=45°时,有x0=±1.结合图形可知,符合条件的x0的取值范围为[-1,1].答案[-1,1]圆的方程1.(2013·重庆,7)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M、N分别是圆C1、C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.5-4B.-1C.6-2D.解析依题意,设⊙C1关于x轴的对称圆为⊙C′,圆心C′为(2,-3),半径为1,⊙C2的圆心为(3,4),半径为3,则(|PC′|+|PC2|)min=|C′C2|=5,∴(|PM|+|PN|)min=(|PC′|+|PC2|)min-(1+3)=5-4,选A.答案A2.(2015·江苏,10)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________.解析直线mx-y-2m-1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r==.故所求圆的标准方程为(x-1)2+y2=2.答案(x-1)2+y2=23.(2014·陕西,12)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为____________.解析因为点(1,0)关于直线y=x对称点的坐标为(0,1),即圆心C为(0,1),又半径为1,∴圆C的标准方程为x2+(y-1)2=1.答案x2+(y-1)2=1直线与圆,圆与圆的位置关系4.(2015·广东,5)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0解析设所求切线方程为2x+y+c=0,依题有=,解得c=±5,所以所求切线的直线方程为2x+y+5=0或2x+y-5=0,故选D.答案D5.(2015·重庆,8)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4C.6D.2解析圆C的标准方程为(x-2)2+(y-1)2=4,圆心为C(2,1),半径为r=2,因此2+a×1-1=0,a=-1,即A(-4,-1),|AB|===6,选C.答案C6.(2015·山东,9)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()A.-或-B.-或-C.-或-D.-或-解析圆(x+3)2+(y...