第11课时空间中直线与平面、平面与平面之间的位置关系对应学生用书P29知识点一直线与平面的位置关系1.直线l与平面α不平行,则()A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对答案C解析直线与平面的位置关系有:直线在平面内、直线与平面平行、直线与平面相交.因为直线l与平面α不平行,所以l与α相交或l⊂α.2.若一条直线上有两点在已知平面外,则下列结论正确的是()A.直线上所有的点都在平面外B.直线上有无数多个点都在平面外C.直线上有无数多个点都在平面内D.直线上至少有一个点在平面内答案B解析一条直线上有两点在已知平面外,则直线与平面平行或相交.相交时有且只有一个点在平面内,故A,C错误;直线与平面平行时,直线上没有一个点在平面内,故D错误.知识点二平面与平面的位置关系3.已知平面α∥平面β,若P,Q是α,β之间的两个点,则()A.过P,Q的平面一定与α,β都相交B.过P,Q有且仅有一个平面与α,β都平行C.过P,Q的平面不一定与α,β都平行D.过P,Q可作无数个平面与α,β都平行答案C解析当过P,Q的直线与α,β相交时,过P,Q的平面一定与平面α,β都相交,排除B,D;当过P,Q的直线与α,β都平行时,可以作唯一的一个平面与α,β都平行,排除A,故选C.4.若三个平面两两相交,有三条交线,则下列命题中正确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案D解析三个平面两两相交,有三条交线,三条交线两两平行或交于一点.如三棱柱的三个侧面两两相交,交线是三棱柱的三条侧棱,这三条侧棱是相互平行的;但有时三条交线交于一点,如长方体的三个相邻的表面两两相交,交线交于一点,此点就是长方体的顶点.知识点三线、面位置关系的应用5.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ. α∥β,a⊂α,b⊂β,∴a,b无公共点.又 a⊂γ且b⊂γ,∴a∥b. α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.对应学生用书P29一、选择题1.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A.平行B.相交C.平行或相交D.不相交答案B解析因为棱台的侧棱延长后交于一点,所以侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是相交,故选B.2.a,b是两条异面直线,A是不在直线a,b上的点,则下列结论成立的是()A.过A有且只有一个平面同时平行于直线a,bB.过A至少有一个平面同时平行于直线a,bC.过A有无数个平面同时平行于直线a,bD.过A且同时平行于直线a,b的平面可能不存在答案D解析如图所示,作a1∥a,a1与b相交构成平面α,如果点A在平面α内,则此时过点A且平行于异面直线a,b的平面不存在.故选D.3.若直线a∥平面α,直线b∥平面α,则a与b的位置关系是()A.平行B.相交C.异面D.以上都有可能答案D解析如图所示,正方体ABCD-A1B1C1D1中,A1B1∥平面ABCD,A1D1∥平面ABCD,有A1B1∩A1D1=A1;又D1C1∥平面ABCD,有A1B1∥D1C1;取BB1和CC1的中点M,N,连接MN,则MN∥平面ABCD,有A1B1与MN异面.故选D.4.下列说法中,正确的个数是()①若直线l与平面α平行,则l与平面α内的任意一条直线都平行;②若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点;③若直线a在平面α内,直线b不在平面α内,则a与b没有公共点;④若直线a与平面α交于点A,则a⊄α.A.0B.1C.2D.3答案C解析①不正确,因为l∥α,所以直线l与平面α没有公共点,则l与平面α内的直线可能平行,也可能异面;②正确;③不正确,a与b也可能相交,有一个公共点;④正确,直线与平面只有一个交点,则直线与平面相交,直线不在平面内.5.如图是一个正方体的平面展开图,在原正方体中,给出下列四个结论:①AB与CD所在直线垂直;②CD与EF所在直线平行;③AB与MN所在直线成60°角;④MN与EF所在直线异面.其中正确结论的序号是()A.①②B.①③C.③④D.②④答案C解析画出原正方体如图所示,由图可知①②错误;AB∥DN,MN=ND=...