小题必刷卷(七)平面向量、数系的扩充与复数的引入考查范围:第24讲~第27讲题组一刷真题角度1复数的概念、几何意义及运算1.[2017·全国卷Ⅰ]下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)2.[2016·全国卷Ⅰ]设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.-3B.-2C.2D.33.[2018·浙江卷]复数21−i(i为虚数单位)的共轭复数是()A.1+iB.1-iC.-1+iD.-1-i4.[2018·全国卷Ⅰ]设z=1−i1+i+2i,则|z|=()A.0B.12C.1D.❑√25.[2018·北京卷]在复平面内,复数11−i的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限6.[2018·江苏卷]若复数z满足i·z=1+2i,其中i是虚数单位,则z的实部为.7.[2018·天津卷]i是虚数单位,复数6+7i1+2i=.角度2平面向量的概念、平面向量基本定理及向量坐标运算8.[2015·全国卷Ⅱ]向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1D.29.[2018·全国卷Ⅰ]在△ABC中,AD为BC边上的中线,E为AD的中点,则⃗EB=()A.34⃗AB-14⃗ACB.14⃗AB-34⃗ACC.34⃗AB+14⃗ACD.14⃗AB+34⃗AC10.[2018·全国卷Ⅲ]已知向量a=(1,2),b=(2,-2),c=(1,λ),若c∥(2a+b),则λ=.角度3平面向量的数量积及应用11.[2016·全国卷Ⅲ]已知向量⃗BA=12,❑√32,⃗BC=❑√32,12,则∠ABC=()A.30°B.45°C.60°D.120°12.[2018·全国卷Ⅱ]已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=()A.4B.3C.2D.013.[2017·全国卷Ⅱ]设非零向量a,b满足|a+b|=|a-b|,则()A.a⊥bB.|a|=|b|C.a∥bD.|a|>|b|14.[2018·天津卷]在如图X7-1的平面图形中,已知OM=1,ON=2,∠MON=120°,⃗BM=2⃗MA,⃗CN=2⃗NA,则⃗BC·⃗OM的值为()图X7-1A.-15B.-9C.-6D.015.[2017·全国卷Ⅲ]已知向量a=(-2,3),b=(3,m),且a⊥b,则m=.16.[2017·天津卷]在△ABC中,∠A=60°,AB=3,AC=2.若⃗BD=2⃗DC,⃗AE=λ⃗AC-⃗AB(λ∈R),且⃗AD·⃗AE=-4,则λ的值为.17.[2017·北京卷]已知点P在圆x2+y2=1上,点A的坐标为(-2,0),O为原点,则⃗AO·⃗AP的最大值为.18.[2018·江苏卷]在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若⃗AB·⃗CD=0,则点A的横坐标为.题组二刷模拟19.[2018·贵州黔东南二模]若复数z=1−i1+i,则z=()A.1B.-1C.iD.-i20.[2018·北京西城区4月模拟]若复数(a+i)(3+4i)的实部与虚部相等,则实数a=()A.7B.-7C.1D.-121.[2018·河南安阳二模]若复数z=1-i,z为z的共轭复数,则复数izz-1的虚部为()A.iB.-iC.1D.-122.[2018·福州5月质检]设向量a=(m,2m+1),b=(m,1),若|a-b|2=|a|2+|b|2,则实数m=()A.-2±❑√3B.-1C.0D.123.[2018·广东东莞三模]已知向量a与b满足|a|=❑√2,|b|=2,(a-b)⊥a,则向量a与b的夹角为()A.5π12B.π3C.π4D.π624.[2018·安徽蚌埠三模]已知△ABC中,⃗BE=2⃗EC,若⃗AB=λ⃗AE+μ⃗AC,则λ=()A.1B.2C.3D.425.[2018·四川成都七中月考]若向量⃗AB=12,❑√32,⃗BC=(❑√3,1),则△ABC的面积为()A.12B.❑√32C.1D.❑√326.[2018·济南模拟]欧拉公式eix=cosx+i·sinx(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当x=π时,eiπ+1=0被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,e4i表示的复数在复平面内位于()A.第一象限B.第二象限C.第三象限D.第四象限27.[2018·郑州三模]在△ABC中,AD⊥AB,⃗CD=3⃗DB,|⃗AD|=1,则⃗AC·⃗AD=()A.1B.2C.3D.428.[2018·石家庄一模]在△ABC中,点D在边AB上,且⃗BD=12⃗DA,设⃗CB=a,⃗CA=b,则⃗CD=()A.13a+23bB.23a+13bC.35a+45bD.45a+35b29.[2018·重庆巴蜀中学月考]在平行四边形ABCD中,∠BAD=π3,AB=2,AD=1,若M,N分别是边BC,CD的中点,则⃗AM·⃗AN的值是()A.72B.2C.3D.15430.[2018·安徽安庆二模]若|a|=1,|b|=❑√3且|a-2b|=❑√7,则向量a与向量b夹角的大小是.31.[2018·常州模拟]若复数z满足z·2i=|z|2+1(其中i是虚数单位),则|z|=.32.[2018·广东佛山二模]在Rt△ABC中,∠B=90°,AB=1,BC=2,D为BC的中点,点E在斜边AC上,若⃗AE=2⃗EC,则⃗DE·⃗AC=.33.[2018·合肥三模]已知⃗OA...