第10章计数原理、概率、随机变量及其分布第2讲A组基础关1.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.56C.49D.28答案C解析分两类:甲、乙中只有1人入选且丙没有入选;甲、乙均入选且丙没有入选,计算可得所求选法种数为CC+CC=49.2.航空母舰“辽宁舰”将进行一次编队配置科学试验,要求2艘攻击型核潜艇一前一后,3艘驱逐舰和3艘护卫舰分列左右,每侧3艘,同侧不能都是同种舰艇,则舰艇分配方案的方法数为()A.72B.324C.648D.1296答案D解析核潜艇排列数为A,6艘舰艇任意排列的排列数为A,同侧均是同种舰艇的排列数为AA×2,则舰艇分配方案的方法数为A(A-AA×2)=1296.3.(2018·昆明质检)互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法()A.A种B.A种C.AA种D.CCAA种答案D解析由红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,则红色菊花两边各一盆白色、黄色菊花,故有CCAA种摆放方法.4.(2018·石家庄模拟)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168答案B解析解法一:先安排小品类节目和相声类节目,然后让歌舞类节目去插空.安排小品类节目和相声类节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“,小品1,歌舞1,小品2,,相声,”,有ACA=36(种)安排方法;同理,第三种情况也有36种安排方法;对于第二种情况,三个节目形成4个空,其形式为“,小品1,,相声,,小品2,”.有AA=48种安排方法,故共有36+36+48=120种安排方法.解法二:先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有A·A=144(种),再剔除小品类节目相邻的情况,共有A·A·A=24(种),于是符合题意的排法共有144-24=120(种).5.有6个座位连成一排,现有A,B,C,D,E,F共6人就坐,则B,C中至少有1人与A相邻而坐的不同坐法有()A.192种B.336种C.384种D.432种答案B解析若A坐在第1或第6个位置,则有2CA=96种不同的坐法;若A在第2、3、4、5号位置时,则有A-2A-4AA=336种不同的坐法,其中,2A是A在两侧的坐法,4AA是A在2、3、4、5号位置且和B,C都不相邻的坐法;综上所述,共有336+96=432种不同的坐法.6.数学活动小组由12名同学组成,现将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出1名组长,则不同的分配方案有()A.A种B.CCC·34种C.·43种D.CCC·43种答案B解析要从12个人中选3人为一组,所以有种,每个组选一名组长,故有·34种,每个组1还要研究一个课题,并且只能研究一个课题,所以相当于四个组排列选课题,故有A·34=CCC·34种.7.(2019·湖南衡阳质检)现要给一长、宽、高分别为3,2,1的长方体工艺品各面涂色,有红、橙、黄、蓝、绿五种颜色的涂料可供选择,要求相邻的面不能涂相同的颜色,且橙色跟黄色二选一,红色要涂两个面,则不同的涂色方案有()A.48种B.72种C.96种D.108种答案C解析若蓝绿选一个,由橙黄二选一,共三种颜色涂6个面,每一种颜色只能涂相对的面,故有CCA=24(种);若蓝绿选两个,由橙黄二选一,故共有4种颜色,红色只能涂相对的面,还有4个面,故有2×(A+CC)·C=72(种),根据分类加法计数原理,共有24+72=96(种).故选C.8.(2018·福州质检)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)答案60解析把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖,)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C种分法,再分给4人有CA种分法,所以不同获奖情况种数为A+CA=24+36=60.9.在“心连心”活动中,五名党员被分配到甲、乙、丙三个村子进行入户走访,每个村子至少安排一名党员...