电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大一轮复习 不等式选讲教师用书 理-人教版高三全册数学试题VIP免费

高考数学大一轮复习 不等式选讲教师用书 理-人教版高三全册数学试题_第1页
1/17
高考数学大一轮复习 不等式选讲教师用书 理-人教版高三全册数学试题_第2页
2/17
高考数学大一轮复习 不等式选讲教师用书 理-人教版高三全册数学试题_第3页
3/17
选修4-5不等式选讲第一节绝对值不等式突破点(一)绝对值不等式的解法基础联通抓主干知识的“源”与“流”(1)含绝对值的不等式|x|a的解集不等式a>0a=0a<0|x|aR(2)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解.②利用零点分段法求解.③构造函数,利用函数的图象求解.考点贯通抓高考命题的“形”与“神”绝对值不等式的解法[典例]解下列不等式:(1)|2x+1|-2|x-1|>0.(2)|x+3|-|2x-1|<+1.[解](1)法一:原不等式可化为|2x+1|>2|x-1|,两边平方得4x2+4x+1>4(x2-2x+1),解得x>,所以原不等式的解集为.法二:原不等式等价于或或解得x>,所以原不等式的解集为.(2)①当x<-3时,原不等式化为-(x+3)-(1-2x)<+1,解得x<10,∴x<-3.②当-3≤x<时,原不等式化为(x+3)-(1-2x)<+1,解得x<-,∴-3≤x<-.本节主要包括2个知识点:1.绝对值不等式的解法;2.绝对值三角不等式.③当x≥时,原不等式化为(x+3)+(1-2x)<+1,解得x>2,∴x>2.综上可知,原不等式的解集为.绝对值不等式的常用解法[方法技巧](1)基本性质法:对a∈R+,|x|a⇔x<-a或x>a.(2)平方法:两边平方去掉绝对值符号.(3)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.能力练通抓应用体验的“得”与“失”1.求不等式|x-1|-|x-5|<2的解集.解:不等式|x-1|-|x-5|<2等价于或或即或或故原不等式的解集为{x|x<1}∪{x|1≤x<4}∪∅={x|x<4}.2.解不等式x+|2x+3|≥2.解:原不等式可化为或解得x≤-5或x≥-.所以原不等式的解集是.3.已知函数f(x)=|x-2|-|x-5|.(1)证明:-3≤f(x)≤3;(2)求不等式f(x)≥x2-8x+15的解集.解:(1)证明:f(x)=|x-2|-|x-5|=当20.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.解:(1)当a=1时,f(x)≥3x+2可化为|x-1|≥2.由此可得x≥3或x≤-1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤-1}.(2)由f(x)≤0得|x-a|+3x≤0.此不等式可化为或即或结合a>0,解得x≤-,即不等式f(x)≤0的解集为. 不等式f(x)≤0的解集为{x|x≤-1},∴-=-1,故a=2.突破点(二)绝对值三角不等式基础联通抓主干知识的“源”与“流”绝对值三角不等式定理(1)定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.考点贯通抓高考命题的“形”与“神”证明绝对值不等式[例1]已知x,y∈R,且|x+y|≤,|x-y|≤,求证:|x+5y|≤1.[证明] |x+5y|=|3(x+y)-2(x-y)|.∴由绝对值不等式的性质,得|x+5y|=|3(x+y)-2(x-y)|≤|3(x+y)|+|2(x-y)|=3|x+y|+2|x-y|≤3×+2×=1.即|x+5y|≤1.[方法技巧]证明绝对值不等式的三种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.(2)利用三角不等式||a|-|b||≤|a±b|≤|a|+|b|进行证明.(3)转化为函数问题,利用数形结合进行证明.绝对值不等式的恒成立问题[例2]设函数f(x)=x+|x-a|.(1)当a=2017时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.[解](1)由题意得,当a=2017时,f(x)=因为f(x)在[2017,+∞)上单调递增,所以函数f(x)的值域为[2017,+∞).(2)由g(x)=|x+1|,不等式g(x)-2>x-f(x)恒成立,知|x+1|+|x-a|>2恒成...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学大一轮复习 不等式选讲教师用书 理-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部