单元质检八立体几何(A)(时间:45分钟满分:100分)一、选择题(本大题共5小题,每小题7分,共35分)1.若平面α⊥平面β,且平面α内的一条直线a垂直于平面β内的一条直线b,则()A.直线a必垂直于平面βB.直线b必垂直于平面αC.直线a不一定垂直于平面βD.过a的平面与过b的平面垂直答案C解析α⊥β,a⊂α,b⊂β,a⊥b,当α∩β=a时,b⊥α;当α∩β=b时,a⊥β,其他情形则未必有b⊥α或a⊥β,所以选项A,B,D都错误,故选C.2.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1D.3π2+3答案A解析V=13×3×(12×π×12+12×2×1)=π2+1,故选A.3.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3√172B.2√10C.132D.3√10答案C1解析由计算可得O为B1C与BC1的交点.设BC的中点为M,连接OM,AM,则可知OM⊥面ABC,连接AO,则AO的长为球半径,可知OM=6,AM=52,在Rt△AOM中,由勾股定理得R=132.4.(2018福建宁德期末)我国古代数学名著《孙子算经》中有如下问题:“今有筑城,上广二丈,下广五丈四尺,高三丈八尺,长五千五百五十尺,秋程人功三百尺.问:须工几何?”意思是:“现要筑造底面为等腰梯形的直棱柱的城墙,其中底面等腰梯形的上底为2丈,下底为5.4丈,高为3.8丈,直棱柱的侧棱长为5550尺.如果一个秋天工期的单个人可以筑出300立方尺,问:一个秋天工期需要多少个人才能筑起这个城墙?”(注:一丈等于十尺)()A.24642B.26011C.52022D.78033答案B解析根据棱柱的体积公式,可得城墙所需土方为20+542×38×5550=7803300(立方尺),一个秋天工期所需人数为7803300300=26011,故选B.5.在空间四面体ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定答案B解析作AE⊥BD,交BD于E,2 平面ABD⊥平面BCD,∴AE⊥平面BCD,BC⊂平面BCD,∴AE⊥BC.而DA⊥平面ABC,BC⊂平面ABC,∴DA⊥BC.又 AE∩AD=A,∴BC⊥平面ABD.而AB⊂平面ABD,∴BC⊥AB,即△ABC为直角三角形.故选B.二、填空题(本大题共3小题,每小题7分,共21分)6.已知四棱锥P-ABCD的三视图如图所示,则此四棱锥外接球的半径为.答案√5解析因为三视图对应的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,满足侧面PAD⊥底面ABCD,△PAD为等腰直角三角形,且高为2,如图所示,可知外接球球心为底面对角线的交点,可求得球半径为12×√42+22=√5.7.已知PA垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形ABCD的形状一定是.答案菱形3解析因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.又PC⊥BD,且PC⊂平面PAC,PA⊂平面PAC,PC∩PA=P,所以BD⊥平面PAC.又AC⊂平面PAC,所以BD⊥AC.又四边形ABCD是平行四边形,所以四边形ABCD是菱形.8.已知A,B,C,D是球面上不共面的四点,AB=AC=√3,BD=CD=√2,BC=√6,平面ABC⊥平面BCD,则此球的体积为.答案8√23π解析如图所示,设球心坐标为O,连接OD,交BC于点E,连接AE,由题意可知OE2+AE2=OA2.设球的半径R=OD=OA=x,由题意,得(√22-x)2+(√62)2=x2,解得x=√2,则此球的体积为V=43πR3=8√23π.三、解答题(本大题共3小题,共44分)9.(14分)如下的三个图中,左面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在右面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;4(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连接BC',证明BC'∥平面EFG.(1)解如图:(2)解所求多面体体积V=V长方体-V正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm3).(3)证明在长方体ABCD-A'B'C'D'中,连接AD',则AD'∥BC'.因为E,G分别为AA',A'D'的中点,所以AD'∥EG.从而EG∥BC'.又BC'⊄平面EFG,所以BC'∥平面EFG.10.(15分)(2018河南商丘二模)如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1⊥底面ABC,AC⊥AB,AC=AB=AA1=2,∠AA1B1=60°,E,F分别为棱A1B1,BC的中点.(1)求三棱柱ABC-A1B1C1的体积;(2)在直线AA1上是否存在一点P,使得CP∥平面AEF?若存在,求出AP的长;若不存在,说明理由.解(1)在三棱柱ABC-A1B1C1中,A1B1=AB.5因为AB=AA1=2,所以A1B1=AA1=2.又因为∠AA1B1=60°,连接AB1,所以△AA1B1是边长为2的正三角形....