电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学复习点拨 用空间向量解决立体几何的几大问题VIP免费

高考数学复习点拨 用空间向量解决立体几何的几大问题_第1页
1/2
高考数学复习点拨 用空间向量解决立体几何的几大问题_第2页
2/2
用空间向量解决立体几何的平行问题一、线线平行问题例1已知直线平面,直线平面,为垂足.求证:.证明:以点为原点,以射线为非负轴,如图1,建立空间直角坐标系,为沿轴的单位向量,且设.,,,,.,.,即.点评:由向量的共线的充要条件知,只要证明即可.二、线面平行问题例2已知是正三棱柱,是的中点,求证:平面.证法1:建立如图2的空间直角坐标系.设正三棱柱的底面边长为,侧棱长为,则.设平面的法向量为,则.由,,得取得,得.由,得,即平面.证法2:如图3,记,则.,共面.又平面,平面.点评:用向量证明线面平行问题通常有两种方法:①向量与两个不共线的向量共面的用心爱心专心1充要条件是存在惟一的有序实数对,使.利用共面向量定理可证明线面平行问题,如证法2.②设为平面的法向量,要证明,只需证明,如证法1.三、面面平行问题例3已知正方体的棱长为1,分别为的中点,求证:平面平面.证明:建立如图4所示的空间直角坐标系,则.得.设为平面的法向量,设为平面的法向量.空间计算:.由,得平面平面.点评:设分别为平面的法向量,要证,只需证明:存在一个非零常数,满足,则.其实本题也可转化为线线平行,则面面平行.即用向量先证明,,则有线面平行,从而平面平面.用心爱心专心2

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学复习点拨 用空间向量解决立体几何的几大问题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部