电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 第7节 二项分布与正态分布练习-人教版高三全册数学试题VIP免费

高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 第7节 二项分布与正态分布练习-人教版高三全册数学试题_第1页
1/7
高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 第7节 二项分布与正态分布练习-人教版高三全册数学试题_第2页
2/7
高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 第7节 二项分布与正态分布练习-人教版高三全册数学试题_第3页
3/7
第7节二项分布与正态分布[A级基础巩固]1.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则他们同时中靶的概率是()A.B.C.D.解析:因为甲每打10次可中靶8次,乙每打10次可中靶7次,所以P(甲)=,P(乙)=,所以他们都中靶的概率是×=.答案:A2.(2020·河南三市联考)在某项测量中,测得变量ξ~N(1,σ2)(σ>0).若ξ在(0,2)内取值的概率为0.8,则ξ在(1,2)内取值的概率为()A.0.2B.0.1C.0.8D.0.4解析:变量ξ~N(1,σ2),正态曲线的对称轴x=μ=1,因为ξ在(0,2)内取值的概率为0.8,所以ξ在(1,2)内取值的概率为×0.8=0.4.答案:D3.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为()A.B.×C.×D.C×解析:由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为×.答案:B4.夏秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长大到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为()A.0.05B.0.0075C.D.解析:设事件A为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件B为该雌性个体成功溯流产卵繁殖,由题意可知P(A)=0.15,P(AB)=0.05,所以P(B|A)===.答案:C5.设随机变量X服从二项分布X~B,则函数f(x)=x2+4x+X存在零点的概率是()A.B.C.D.解析:因为函数f(x)=x2+4x+X存在零点,所以Δ=16-4X≥0,所以X≤4.因为X服从X~B,所以P(X≤4)=1-P(X=5)=1-=.答案:C6.设每天从甲地去乙地的旅客人数为随机变量X,且X~N(800,502).则一天中从甲地去乙地的旅客人数不超过900的概率为________.(参考数据:若X~N(μ,σ2),有P(μ-σ900)==0.0228,因此P(X≤900)=1-P(X>900)=1-0.0228=0.9772.答案:0.97727.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有5个乘客,且每位乘客在这三层的每一层下电梯的概率均为,用X表示这5位乘客在第20层下电梯的人数,则P(X=4)=________.解析:考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故X~B,即有P(X=k)=C×,k=0,1,2,3,4,5.故P(X=4)=C×=.答案:8.将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)=________.解析:依题意,随机试验共有9个不同的基本结果.由于随机投掷,且小正方形的面积大小相等,所以事件B包含4个基本结果,事件AB包含1个基本结果.所以P(B)=,P(AB)=.所以P(A|B)===.答案:9.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费/元0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234≥5概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率.解:(1)设A表示事件“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)====.因此所求概率为.10.(2020·河北九校联考)已知...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 第7节 二项分布与正态分布练习-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部