电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第九章 计数原理与概率 课时达标54 分类加法计数原理与分步乘法计数原理-人教版高三全册数学试题VIP免费

高考数学一轮复习 第九章 计数原理与概率 课时达标54 分类加法计数原理与分步乘法计数原理-人教版高三全册数学试题_第1页
1/3
高考数学一轮复习 第九章 计数原理与概率 课时达标54 分类加法计数原理与分步乘法计数原理-人教版高三全册数学试题_第2页
2/3
高考数学一轮复习 第九章 计数原理与概率 课时达标54 分类加法计数原理与分步乘法计数原理-人教版高三全册数学试题_第3页
3/3
第54讲分类加法计数原理与分步乘法计数原理[解密考纲]本考点考查用两个原理解决计数问题.一、选择题1.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数是(A)A.12B.6C.8D.16解析若第一门安排在开头或结尾,则第二门有3种安排方法,这时,共有C×3=6(种)方案.若第一门安排在中间的3天中,则第二门有2种安排方案,这时,共有3×2=6(种)方案.综上可得,所有的不同的考试安排方案有6+6=12(种),故选A.2.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为(C)A.324B.648C.328D.360解析首先应考虑0,当0排在个位时,有A=9×8=72(个),当0不排在个位时,有AA=4×8=32(个).当不含0时,有A·A=4×7×8=224(个),由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).3.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有(B)A.8种B.9种C.10种D.11种解析设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).4.如图所示的五个区域中,中心区域是一幅图画,现在要求在其余四个区域中涂色,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域涂色不同,则不同的涂色方法种数为(C)A.64B.72C.84D.96解析分成两类,A和C同色时有4×3×3=36(种);A和C不同色时有4×3×2×2=48(种),所以一共有36+48=84(种),故选C.5.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花(D)A.3360元B.6720元C.4320元D.8640元解析从01至10中选3个连续的号共有8种选法;从11至20中选2个连续的号共有9种选法;从21至30中选1个号有10种选法;从31至36中选一个号有6种选法,由分步乘法计数原理知共有8×9×10×6=4320(种)选法,故至少需花4320×2=8640(元),故选D.6.设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中1最大的数,则不同的选择方法共有(B)A.50种B.49种C.48种D.47种解析当A中最大的数为1时,B可以是{2,3,4,5}的非空子集,即有24-1=15(种)方法;当A中最大的数为2时,A可以是{2},也可以是{1,2},B可以是{3,4,5}的非空子集,即有2×(23-1)=14(种)方法;当A中最大的数为3时,A可以是{3},{1,3},{2,3},{1,2,3},B可以是{4,5}的非空子集,即有4(22-1)=12(种)方法;当A中最大的数为4时,A可以是{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},B可以是{5},有8×1=8(种)方法,故共有15+14+12+8=49(种)方法.二、填空题7.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为__96__(用数字作答).解析先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C=4(种)情况,再对应到4个人,有A=24(种)情况,则共有4×24=96(种)情况.8.如图所示的几何体由一个正棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有__12__种.解析先涂三棱锥P-ABC的三个侧面,然后涂三棱柱ABC-A1B1C1的三个侧面,共有3×2×1×2=12种不同的涂色方案.9.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有__108__种.123456789解析把区域分成三部分,第一部分1,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第九章 计数原理与概率 课时达标54 分类加法计数原理与分步乘法计数原理-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部