专题03导数及其应用1.【2019年高考全国Ⅱ卷文数】曲线y=2sinx+cosx在点(π,-1)处的切线方程为A.B.C.D.【答案】C【解析】则在点处的切线方程为,即.故选C.【名师点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.2.【2019年高考全国Ⅲ卷文数】已知曲线在点(1,ae)处的切线方程为y=2x+b,则A.B.a=e,b=1C.D.,【答案】D【解析】 ∴切线的斜率,,将代入,得.故选D.【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a,b的等式,从而求解,属于常考题型.3.【2019年高考浙江】已知,函数.若函数恰有3个零点,则A.a<–1,b<0B.a<–1,b>0C.a>–1,b<0D.a>–1,b>0【答案】C【解析】当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x¿b1−a,则y=f(x)﹣ax﹣b最多有一个零点;当x≥0时,y=f(x)﹣ax﹣b¿13x3−12(a+1)x2+ax﹣ax﹣b¿13x3−12(a+1)x2﹣b,,当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,则y=f(x)﹣ax﹣b最多有一个零点,不合题意;当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴b1−a<0且¿,解得b<0,1﹣a>0,b>−16(a+1)3,则a>–1,b<0.故选C.【名师点睛】本题考查函数与方程,导数的应用.当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b最多有一个零点;当x≥0时,y=f(x)﹣ax﹣b¿13x3−12(a+1)x2﹣b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷文数】曲线在点处的切线方程为____________.【答案】【解析】所以切线的斜率,则曲线在点处的切线方程为,即.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.5.【2019年高考天津文数】曲线在点处的切线方程为__________.【答案】【解析】 ,∴,故所求的切线方程为,即.【名师点睛】曲线切线方程的求法:(1)以曲线上的点(x0,f(x0))为切点的切线方程的求解步骤:①求出函数f(x)的导数f′(x);②求切线的斜率f′(x0);③写出切线方程y-f(x0)=f′(x0)(x-x0),并化简.(2)如果已知点(x1,y1)不在曲线上,则设出切点(x0,y0),解方程组得切点(x0,y0),进而确定切线方程.6.【2019年高考江苏】在平面直角坐标系中,P是曲线上的一个动点,则点P到直线的距离的最小值是▲.【答案】4【解析】由,得,设斜率为的直线与曲线切于,由得(舍去),∴曲线上,点到直线的距离最小,最小值为.故答案为.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.7.【2019年高考江苏】在平面直角坐标系中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是▲.【答案】【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点,则.又,当时,,则曲线在点A处的切线为,即,将点代入,得,即,考察函数,当时,,当时,,且,当时,单调递增,注意到,故存在唯一的实数根,此时,故点的坐标为.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.8.【2019年高考全国Ⅰ卷文数】已知函数f...