电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 考点题型 课下层级训练35 空间几何体的表面积与体积(含解析)-人教版高三全册数学试题VIP免费

高考数学一轮复习 考点题型 课下层级训练35 空间几何体的表面积与体积(含解析)-人教版高三全册数学试题_第1页
1/5
高考数学一轮复习 考点题型 课下层级训练35 空间几何体的表面积与体积(含解析)-人教版高三全册数学试题_第2页
2/5
高考数学一轮复习 考点题型 课下层级训练35 空间几何体的表面积与体积(含解析)-人教版高三全册数学试题_第3页
3/5
课下层级训练(三十五)空间几何体的表面积与体积[A级基础强化训练]1.把球的表面积扩大到原来的2倍,那么体积扩大到原来的()A.2倍B.2倍C.倍D.倍【答案】B[由题意知球的半径扩大到原来的倍,则体积V=πR3,知体积扩大到原来的2倍.]2.在△ABC中,AB=2,BC=1.5,∠ABC=120°(如图所示),若将△ABC绕直线BC旋转一周,则形成的旋转体的体积是()A.B.C.D.【答案】D[依题意可知,旋转体是一个大圆锥去掉一个小圆锥,如图所示,OA=AB·cos30°=2×=,所以旋转体的体积为π·()2·(OC-OB)=.]3.(2019·山东东营模拟)表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是()A.12πB.8πC.D.4π【答案】A[设正方体的棱长为a,因为表面积为24,即6a2=24,得a=2,正方体的体对角线长度为=2,所以正方体的外接球半径为r==,所以球的表面积为S=4πr2=12π.]4.(2018·全国卷Ⅰ)在长方体ABCDA1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.6C.8D.8【答案】C[如图,连接AC1,BC1,AC. AB⊥平面BB1C1C,∴∠AC1B为直线AC1与平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1==4,在Rt△ACC1中,CC1===2,∴V长方体=AB×BC×CC1=2×2×2=8.]5.(2017·全国卷Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为________.【答案】14π[ 长方体的顶点都在球O的球面上,∴长方体的体对角线的长度就是其外接球的直径.设球的半径为R,则2R==.∴球O的表面积为S=4πR2=4π×2=14π.]6.(2017·江苏卷)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是________.【答案】[设球O的半径为R, 球O与圆柱O1O2的上、下底面及母线均相切,∴圆柱O1O2的高为2R,底面半径为R.∴==.]7.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.【答案】[设新的底面半径为r,由题意得πr2·4+πr2·8=π×52×4+π×22×8,解得r=.]8.(2019·山东潍坊检测)已知正三棱锥P﹣ABC的侧面是直角三角形,P﹣ABC的顶点都在球O的球面上,正三棱锥P﹣ABC的体积为36,则球O的表面积为________.【答案】108π[ 正三棱锥P﹣ABC,PA,PB,PC两两垂直,∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接球O,设球O的半径为R,则正方体的边长为, 正三棱锥P﹣ABC的体积为36,∴V=×S△PAC×PB=××××=36,∴R=3,∴球O的表面积为S=4πR2=108π.]9.如图(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC,如图(b)所示.(1)求证:BC⊥平面ACD;(2)求几何体DABC的体积.【答案】(1)证明在图中,可得AC=BC=2,从而AC2+BC2=AB2,故AC⊥BC,又平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC⊂平面ABC,∴BC⊥平面ACD.(2)解由(1)可知,BC为三棱锥BACD的高,BC=2,S△ACD=2,∴VBACD=S△ACD·BC=×2×2=,由等体积性可知,几何体DABC的体积为.[B级能力提升训练]10.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.【答案】B[设圆柱的底面半径为r,球的半径为R,且R=1,由圆柱两个底面的圆周在同一个球的球面上可知,r,R及圆柱的高的一半构成直角三角形.∴r==.∴圆柱的体积为V=πr2h=π×1=.]11.在三棱锥PABC中,PA⊥平面ABC且PA=2,△ABC是边长为的等边三角形,则该三棱锥外接球的表面积为()A.B.4πC.8πD.20π【答案】C[由题意得,此三棱锥外接球即为以△ABC为底面、以PA为高的正三棱柱的外接球,因为△ABC的外接圆半径r=××=1,外接球球心到△ABC的外接圆圆心的距离d=1,所以外接球的半径R==,所以三棱锥外接球的表面积S=4πR2=8π.]12.(2018·全国卷Ⅱ)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 考点题型 课下层级训练35 空间几何体的表面积与体积(含解析)-人教版高三全册数学试题

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部