热点跟踪训练11.(2019·天一大联考)已知函数f(x)=mex-x2.(1)若m=1,求曲线y=f(x)在(0,f(0))处的切线方程;(2)若关于x的不等式f(x)≥x(4-mex)在[0,+∞)上恒成立,求实数m的取值范围.解:(1)当m=1时,f(x)=ex-x2,则f′(x)=ex-2x.所以f(0)=1,且斜率k=f′(0)=1.故所求切线方程为y-1=x,即x-y+1=0.(2)由mex-x2≥x(4-mex)得mex(x+1)≥x2+4x.故问题转化为当x≥0时,m≥.令g(x)=,x≥0,则g′(x)=.由g′(x)=0及x≥0,得x=-1.当x∈(0,-1)时,g′(x)>0,g(x)单调递增;当x∈(-1,+∞)时,g′(x)<0,g(x)单调递减.所以当x=-1时,g(x)max=g(-1)=2e1-.所以m≥2e1-.即实数m的取值范围为[2e1-,+∞).2.(2018·全国卷Ⅱ)已知函数f(x)=ex-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.(1)证明:当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)·e-x=-(x-1)2e-x.当x≠1时,g′(x)<0,所以g(x)在(0,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.(2)解:设函数h(x)=1-ax2e-x.f(x)在(0,+∞)只有一个零点等价于h(x)在(0,+∞)只有一个零点.(ⅰ)当a≤0时,h(x)>0,h(x)没有零点;(ⅱ)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0.所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-是h(x)在(0,+∞)的最小值.①若h(2)>0,即a<,h(x)在(0,+∞)上没有零点.②若h(2)=0,即a=,h(x)在(0,+∞)上只有一个零点.③若h(2)<0,即a>,因为h(0)=1,所以h(x)在(0,2)有一个零点;由(1)知,当x>0时,ex>x2,所以h(4a)=1-=1->1-=1->0,故h(x)在(2,4a)有一个零点.因此h(x)在(0,+∞)上有两个零点.综上,当f(x)在(0,+∞)上只有一个零点时,a=.3.(2020·潍坊调研)已知函数f(x)=ex(ax2+x+a)(其中常数a≥0).(1)求函数f(x)的单调区间;(2)若函数f(x)≤ex(ax2+2x)+1恒成立,求实数a的取值范围.解:(1)函数f(x)的定义域为R,且f′(x)=(ax+a+1)(x+1)ex,1①当a=0时,f′(x)=ex(x+1),当x>-1时,f′(x)>0,当x<-1时,f′(x)<0,所以函数f(x)的单调增区间为(-1,+∞),单调减区间为(-∞,-1).②当a>0时,f′(x)=a(x+1)ex,则方程f′(x)=0有两根-1,-,且-1>-.所以函数f(x)的单调增区间为和(-1,+∞),单调减区间为.综上可知,当a>0时,函数f(x)的单调增区间为和(-1,+∞),单调减区间为;当a=0时,函数f(x)的单调增区间为(-1,+∞),单调减区间为(-∞,-1).(2)函数f(x)≤ex(ax2+2x)+1恒成立转化为a≤x+在R上恒成立.令h(x)=x+,则h′(x)=,易知h(x)在(0,+∞)上为增函数,在(-∞,0)上为减函数.所以h(x)min=h(0)=1,则a≤1.又依题设知a≥0,故实数a的取值范围为[0,1].4.已知函数f(x)=lnx,g(x)=x+m(m∈R).(1)若f(x)≤g(x)恒成立,求实数m的取值范围;(2)已知x1,x2是函数F(x)=f(x)-g(x)的两个零点,且x10),则F′(x)=-1=(x>0),当x>1时,F′(x)<0,当00,所以F(x)在(1,+∞)上单调递减,在(0,1)上单调递增.F(x)在x=1处取得最大值-1-m,若f(x)≤g(x)恒成立,则-1-m≤0,即m≥-1.(2)证明:由(1)可知,若函数F(x)=f(x)-g(x)有两个零点,则m<-1,0F,由F(x1)=F(x2)=0,m=lnx1-x1,即证ln--m=ln-+x1-lnx1<0,令h(x)=-+x-2lnx(00,故h(x)在(0,1)上单调递增,所以h(x)0,所以x-a>0,所以f′(x)>0,所以f(x)在定义域(0,+∞)上单调递增;当a>0时,因为x>a时,f′(x)>0...