电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学(题型预测+范例选讲)综合能力题选讲 第05讲 三角恒等变换(含详解)VIP免费

高考数学(题型预测+范例选讲)综合能力题选讲 第05讲 三角恒等变换(含详解)_第1页
1/3
高考数学(题型预测+范例选讲)综合能力题选讲 第05讲 三角恒等变换(含详解)_第2页
2/3
高考数学(题型预测+范例选讲)综合能力题选讲 第05讲 三角恒等变换(含详解)_第3页
3/3
三角恒等变换题型预测三角恒等变形是运用三角解题的基础.高考中对于三角部分的考查,主要集中于三角恒等变换.难度一般控制在中、低档水平,复习时要注重通法和常规题型的掌握.范例选讲例1求值:.讲解原式的分子,原式的分母=,所以,原式=1.点评三角函数式的化简和求值,是训练三角恒等变换的基本题型,在化简和求值中,常用的方法有:切割化弦、异名化同名、角的配凑、拆项、降幂与升幂等.例2已知,求的值.讲解由条件直接解出的值是不可取的.由于,所以,应该设法由已知求出及的三角函数值.已知可以让我们联想到形如的式子,但二者又不完全相同.即后者可以直接和差化积,前者则不然.其实,只要作一个变换,令,则可将本题转化为我们熟悉的问题.解1:令,则原题等价于:已知,求的值.两式分别和差化积并相除得:,所以.分别将已知两式平方并求和得:,所以,.在对式子进行变形的过程中,我们不难联想到,既然可以平方相加,为什么不能平方相减呢?尝试的结果可以使我们得到下面的解法:解2:由平方相加得:.上述两式平方相减得:.将上式前两项和差化积,得:,结合,可解得:.所以,.点评联想和类比,常常可以促成问题转化,并最终达到解决问题的目的.例3已知函数在区间上单调递减,试求实数的取值范围.讲解已知条件实际上给出了一个在区间上恒成立的不等式.任取,且,则不等式恒成立,即恒成立.化简得由可知:,所以上式恒成立的条件为:.由于且当时,,所以,从而,有,故的取值范围为.点评求时,要注意能否取到的问题.请思考,下面的解法有什么问题:当时,,有,从而,故的取值范围为.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学(题型预测+范例选讲)综合能力题选讲 第05讲 三角恒等变换(含详解)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部