第4讲椭圆一、选择题1.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是().A.+=1B.+=1C.+=1D.+=1解析依题意知:2a=18,∴a=9,2c=×2a,∴c=3,∴b2=a2-c2=81-9=72,∴椭圆方程为+=1.答案A2.椭圆+=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为().A.B.C.D.-2解析因为A,B为左、右顶点,F1,F2为左、右焦点,所以|AF1|=a-c,|F1F2|=2c,|F1B|=a+c.又因为|AF1|,|F1F2|,|F1B|成等比数列,所以(a-c)(a+c)=4c2,即a2=5c2.所以离心率e==,故选B.答案B3.已知椭圆x2+my2=1的离心率e∈,则实数m的取值范围是().A.B.C.∪D.∪解析椭圆标准方程为x2+=1.当m>1时,e2=1-∈,解得m>;当0b>0)的两顶点为A(a,0),B(0,b),且左焦点为F,△FAB是以角B为直角的直角三角形,则椭圆的离心率e为()A.B.C.D.解析根据已知a2+b2+a2=(a+c)2,即c2+ac-a2=0,即e2+e-1=0,解得e=,故所求的椭圆的离心率为.答案B6.已知椭圆C:+=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为().A.+=1B.+=1C.+=1D.+=1解析因为椭圆的离心率为,所以e==,c2=a2,c2=a2=a2-b2,所以b2=a2,即a2=4b2.1双曲线的渐近线方程为y=±x,代入椭圆方程得+=1,即+==1,所以x2=b2,x=±b,y2=b2,y=±b,则在第一象限双曲线的渐近线与椭圆C的交点坐标为,所以四边形的面积为4×b×b=b2=16,所以b2=5,所以椭圆方程为+=1.答案D二、填空题7.设F1、F2分别是椭圆+=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为________.解析由题意知|OM|=|PF2|=3,∴|PF2|=6.∴|PF1|=2×5-6=4.答案48.在等差数列{an}中,a2+a3=11,a2+a3+a4=21,则椭圆C:+=1的离心率为________.解析由题意,得a4=10,设公差为d,则a3+a2=(10-d)+(10-2d)=20-3d=11,∴d=3,∴a5=a4+d=13,a6=a4+2d=16>a5,∴e==.答案9.椭圆=1的焦点为F1和F2,点P在椭圆上.如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的_____倍.解析不妨设F1(-3,0),F2(3,0)由条件得P(3,±),即|PF2|=,|PF1|=,因此|PF1|=7|PF2|.答案710.如图,∠OFB=,△ABF的面积为2-,则以OA为长半轴,OB为短半轴,F为一个焦点的椭圆方程为________.解析设标准方程为+=1(a>b>0),由题可知,|OF|=c,|OB|=b,∴|BF|=a, ∠OFB=,∴=,a=2b.S△ABF=·|AF|·|BO|=(a-c)·b=(2b-b)b=2-,∴b2=2,∴b=,∴a=2,∴椭圆的方程为+=1.答案+=1三、解答题11.如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.(1)当P在圆上运动时,求点M的轨迹C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的长度.解(1)设M的坐标为(x,y),P的坐标为(xP,yP),由已知得2 P在圆上,∴x2+2=25,即C的方程为+=1.(2)过点(3,0)且斜率为的直线方程为y=(x-3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x-3)代入C的方程,得+=1,即x2-3x-8=0.∴x1=,x2=.∴线段AB的长度为|AB|====.12.设F1,F2分别为椭圆C:+=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2.(1)求椭圆C的焦距;(2)如果AF2=2F2B,求椭圆C的方程.解(1)设椭圆C的焦距为2c,由已知可得F1到直线l的距离c=2,故c=2.所以椭圆C的焦距为4.(2)设A(x1,y1),B(x2,y2),由AF2=2F2B及l的倾斜角为60°,知y1<0,y2>0,直线l的方程为y=(x-2).由消去x,整理得(3a2+b2)y2...