专题3.5参数范围与最值不等建解不宜迟【题型综述】参数范围与最值问题解题策略一般有以下几种:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质构造含参数的不等式,通过解不等式解出参数的范围和最值.(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.参数的范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数的不等式,通过解不等式求出参数的范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.【典例指引】类型一参数范围问题例1【2016高考江苏卷】(本小题满分16分)如图,在平面直角坐标系中,已知以为圆心的圆及其上一点.(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;(2)设平行于的直线与圆相交于两点,且,求直线的方程;(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。【解析】圆M的标准方程为,所以圆心M(6,7),半径为5,.(1)由圆心在直线x=6上,可设.因为N与x轴相切,与圆M外切,所以,于是圆N的半径为,从而,解得.因此,圆N的标准方程为.(2)因为直线l||OA,所以直线l的斜率为.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离因为而所以,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.所以解得.因此,实数t的取值范围是.类型二方程中参数范围问题例2.【2016高考江苏卷】(本小题满分10分)如图,在平面直角坐标系xOy中,已知直线,抛物线(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为;②求p的取值范围.【解析】(1)抛物线的焦点为由点在直线上,得,即所以抛物线C的方程为因为P和Q是抛物线C上的相异两点,所以从而,化简得.方程(*)的两根为,从而因为在直线上,所以因此,线段PQ的中点坐标为②因为在直线上所以,即由①知,于是,所以因此的取值范围为类型三斜率范围问题例3【2016高考天津理数】(本小题满分14分)设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.(1)求椭圆的方程;(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.【解析】(1)设,由,即,可得,又,所以,因此,所以椭圆的方程为.由(Ⅰ)知,,设,有,.由,得,所以,解得.因此直线的方程为.设,由方程组消去,解得.在中,,即,化简得,即,解得或.所以,直线的斜率的取值范围为.类型四离心率的范围问题例4.【2016高考浙江理数】(本题满分15分)如图,设椭圆(a>1).(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【解析】(1)设直线被椭圆截得的线段为,由得,故,.因此.由于,,得,因此,①因为①式关于,的方程有解的充要条件是,所以.因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,由得,所求离心率的取值范围为.【扩展链接】1.若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为,交椭圆于A、B两点,则有:①;②若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为,交椭圆于A、B两点,则有:①;②同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距)结论:椭圆过焦点弦长公式:2.过椭圆左焦点的焦点弦为,则;过右焦点的弦.3.抛物线与直线相交于且该直线与轴交于点,则有.4.设为过抛物线焦点的弦,,直线的倾斜角为,则①.②.③.④.;⑤.;⑥.;【同步训练】1.已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于两点,分别为线段的中点,若坐标原点在以为直径的圆上,且,求的取值范围.【思路点拨】(1)结...