电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大一轮复习 第八章 解析几何 课时跟踪检测(四十八)双曲线练习 文-人教版高三全册数学试题VIP免费

高考数学大一轮复习 第八章 解析几何 课时跟踪检测(四十八)双曲线练习 文-人教版高三全册数学试题_第1页
1/4
高考数学大一轮复习 第八章 解析几何 课时跟踪检测(四十八)双曲线练习 文-人教版高三全册数学试题_第2页
2/4
高考数学大一轮复习 第八章 解析几何 课时跟踪检测(四十八)双曲线练习 文-人教版高三全册数学试题_第3页
3/4
课时跟踪检测(四十八)双曲线一抓基础,多练小题做到眼疾手快1.已知双曲线x2+my2=1的虚轴长是实轴长的2倍,则实数m的值是()A.4B.C.-D.-4解析:选C依题意得m<0,双曲线方程是x2-=1,于是有=2×1,m=-.2.若双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x解析:选B由条件e=,即=,得==1+=3,所以=,所以双曲线的渐近线方程为y=±x.故选B.3.已知双曲线C:-=1(a>0,b>0)的焦点为F1,F2,且C上点P满足PF1·PF2=0,|PF1|=3,|PF2|=4,则双曲线C的离心率为()A.B.C.D.5解析:选D依题意得,2a=|PF2|-|PF1|=1,|F1F2|==5,因此该双曲线的离心率e==5.4.(2017·西安质检)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=________.解析:双曲线的右焦点为F(2,0),过F与x轴垂直的直线为x=2,渐近线方程为x2-=0,将x=2代入x2-=0,得y2=12,y=±2,∴|AB|=4.答案:45.如图所示,已知双曲线以长方形ABCD的顶点A,B为左、右焦点,且双曲线过C,D两顶点.若|AB|=4,|BC|=3,则此双曲线的标准方程为________.解析:设双曲线的标准方程为-=1(a>0,b>0).由题意得B(2,0),C(2,3),∴解得∴双曲线的标准方程为x2-=1.答案:x2-=1二保高考,全练题型做到高考达标1.“k<9”是“方程+=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 方程+=1表示双曲线,∴(25-k)(k-9)<0,∴k<9或k>25,∴“k<9”是“方程+=1表示双曲线”的充分不必要条件,故选A.2.(2017·合肥质检)若双曲线C1:-=1与C2:-=1(a>0,b>0)的渐近线相同,且双曲线C2的焦距为4,则b=()A.2B.4C.6D.8解析:选B由题意得,=2⇒b=2a,C2的焦距2c=4⇒c==2⇒b=4,故选B.3.(2016·石家庄教学质量检测)已知直线l与双曲线C:x2-y2=2的两条渐近线分别交于A,B两点,若AB的中点在该双曲线上,O为坐标原点,则△AOB的面积为()A.B.1C.2D.4解析:选C由题意得,双曲线的两条渐近线方程为y=±x,设A(x1,x1),B(x2,-x2),∴AB中点坐标为,∴2-2=2,即x1x2=2,∴S△AOB=|OA|·|OB|=|x1|·|x2|=x1x2=2,故选C.4.(2017·河南六市第一次联考)已知点F1,F2分别是双曲线C:-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线C的左、右两支分别交于A,B两点,若|AB|∶|BF2|∶|AF2|=3∶4∶5,则双曲线的离心率为()A.2B.4C.D.解析:选C由题意,设|AB|=3k,|BF2|=4k,|AF2|=5k,则BF1⊥BF2,|AF1|=|AF2|-2a=5k-2a, |BF1|-|BF2|=5k-2a+3k-4k=4k-2a=2a,∴a=k,∴|BF1|=6a,|BF2|=4a,又|BF1|2+|BF2|2=|F1F2|2,即13a2=c2,∴e==.5.(2017·长春质检)过双曲线x2-=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为()A.10B.13C.16D.19解析:选B由题可知,|PM|2-|PN|2=(|PC1|2-4)-(|PC2|2-1),因此|PM|2-|PN|2=|PC1|2-|PC2|2-3=(|PC1|-|PC2|)(|PC1|+|PC2|)-3=2(|PC1|+|PC2|)-3≥2|C1C2|-3=13.6.已知双曲线的一个焦点F(0,),它的渐近线方程为y=±2x,则该双曲线的标准方程为________________.解析:设双曲线的标准方程为-=1(a>0,b>0),由题意得⇒⇒所以双曲线的标准方程为-x2=1.答案:-x2=17.若点P是以A(-3,0),B(3,0)为焦点,实轴长为2的双曲线与圆x2+y2=9的一个交点,则|PA|+|PB|=________.解析:不妨设点P在双曲线的右支上,则|PA|>|PB|.因为点P是双曲线与圆的交点,所以由双曲线的定义知,|PA|-|PB|=2,①又|PA|2+|PB|2=36,②联立①②化简得2|PA|·|PB|=16,所以(|PA|+|PB|)2=|PA|2+|PB|2+2|PA|·|PB|=52,所以|PA|+|PB|=2.答案:28.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则双曲线的离心率e的最大值为________.解析:由双曲线定义知|PF1|-|PF2|=2a,又已知|PF1|=4|PF2|,所以|...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学大一轮复习 第八章 解析几何 课时跟踪检测(四十八)双曲线练习 文-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部