19三角函数化简与求值策略1.若sin(π+α)=-,则cosα=________.答案±解析由sin(π+α)=-,得-sinα=-,即sinα=,∴cosα=±=±.2.设tanα,tanβ是方程x2-3x+2=0的两根,则tan(α+β)的值为________.答案-3解析tanα+tanβ=3,tanα×tanβ=2,所以tan(α+β)==-3.3.sin(65°-x)cos(x-20°)+cos(65°-x)·cos(110°-x)的值为________.答案解析sin(65°-x)cos(x-20°)+cos(65°-x)cos(110°-x)=sin(65°-x)cos(x-20°)+cos(65°-x)[-cos(70°+x)]=sin(65°-x)cos(x-20°)+cos(65°-x)sin(x-20°)=sin(65°-x+x-20°)=sin45°=.4.的值是________.答案解析原式====sin30°=.5.若0<α<,-<β<0,cos=,cos=,则cos=________.答案解析∵cos=,0<α<,∴sin=.又∵cos=,-<β<0,∴sin=,∴cos=cos=coscos+sinsin=×+×=.6.(2014·课标全国Ⅰ改编)设α∈(0,),β∈(0,),且tanα=,则2α-β=________.答案解析由tanα=得=,即sinαcosβ=cosα+cosαsinβ,∴sin(α-β)=cosα=sin(-α).∵α∈(0,),β∈(0,),∴α-β∈(-,),-α∈(0,),∴由sin(α-β)=sin(-α),得α-β=-α,∴2α-β=.7.已知tanα=2,则的值为________.答案解析===tanα+=.8.·的值为________.答案1解析原式=·=·=1.9.已知sinθ+cosθ=,θ∈(0,π),则tanθ=________.答案-解析方法一因为sinθ+cosθ=,θ∈(0,π),所以(sinθ+cosθ)2=1+2sinθcosθ=,所以sinθcosθ=-.由根与系数的关系,知sinθ,cosθ是方程x2-x-=0的两根,所以x1=,x2=-.又sinθcosθ=-<0,所以sinθ>0,cosθ<0.所以sinθ=,cosθ=-.所以tanθ==-.方法二同法一,得sinθcosθ=-,所以=-.齐次化切,得=-,即60tan2θ+169tanθ+60=0,解得tanθ=-或tanθ=-.又θ∈(0,π),sinθ+cosθ=>0,sinθcosθ=-<0.所以θ∈(,),所以tanθ=-.10.已知sinθ+cosθ=(0<θ<),则sinθ-cosθ的值为________.答案-解析∵sinθ+cosθ=,∴(sinθ+cosθ)2=1+2cosθsinθ=,∴2cosθcosθ=,∴(sinθ-cosθ)2=1-=,又θ∈(0,),∴sinθ