电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第九章 解析几何 第八节 曲线与方程课后作业 理-人教版高三全册数学试题VIP免费

高考数学一轮复习 第九章 解析几何 第八节 曲线与方程课后作业 理-人教版高三全册数学试题_第1页
1/4
高考数学一轮复习 第九章 解析几何 第八节 曲线与方程课后作业 理-人教版高三全册数学试题_第2页
2/4
高考数学一轮复习 第九章 解析几何 第八节 曲线与方程课后作业 理-人教版高三全册数学试题_第3页
3/4
【创新方案】2017届高考数学一轮复习第九章解析几何第八节曲线与方程课后作业理一、选择题1.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是()A.2x+y+1=0B.2x-y-5=0C.2x-y-1=0D.2x-y+5=02.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则动点P的轨迹是()A.直线B.圆C.椭圆D.双曲线3.已知点F,直线l:x=-,点B是l上的动点.若过B作垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是()A.双曲线B.椭圆C.圆D.抛物线4.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为()A.-=1B.+=1C.-=1D.+=15.已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,椭圆的另一个焦点F的轨迹方程是()A.y2-=1(y≤-1)B.y2-=1C.y2-=-1D.x2-=1二、填空题6.在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足向量在向量上的投影为-,则点P的轨迹方程是________.7.设过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,且AB的中点为M,则点M的轨迹方程是________.8.设F1,F2为椭圆+=1的左、右焦点,A为椭圆上任意一点,过焦点F1向∠F1AF2的外角平分线作垂线,垂足为D,则点D的轨迹方程是________.三、解答题9.已知圆C1的圆心在坐标原点O,且恰好与直线l1:x-y-2=0相切.(1)求圆的标准方程;(2)设点A为圆上一动点,AN⊥x轴于点N,若动点Q满足(其中m为非零常数),试求动点Q的轨迹方程C2.10.在平面直角坐标系中,已知A1(-,0),A2(,0),P(x,y),M(x,1),N(x,-2),若实数λ使得(O为坐标原点).求P点的轨迹方程,并讨论P点的轨迹类型.11.如图所示,在平面直角坐标系xOy中,A(1,0),B(1,1),C(0,1),映射f将xOy平面上的点P(x,y)对应到另一个平面直角坐标系uO′v上的点P′(2xy,x2-y2),则当点P沿着折线ABC运动时,在映射f的作用下,动点P′的轨迹是()2.△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是_________________.3.已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.答案一、选择题1.解析:选D由题意知,M为PQ中点,设Q(x,y),则P为(-2-x,4-y),代入2x-y+3=0得2x-y+5=0.2.解析:选B设P(x,y),则=2,整理得x2+y2-4x=0,又D2+E2-4F=16>0,所以动点P的轨迹是圆.3.解析:选D由已知得|MF|=|MB|.由抛物线定义知,点M的轨迹是以F为焦点,l为准线的抛物线.4.解析:选D M为AQ垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹为椭圆.∴a=,c=1,则b2=a2-c2=,2∴椭圆的标准方程为+=1.5.解析:选A由题意,得|AC|=13,|BC|=15,|AB|=14,又|AF|+|AC|=|BF|+|BC|,∴|AF|-|BF|=|BC|-|AC|=2.故点F的轨迹是以A,B为焦点,实轴长为2的双曲线的下支. c=7,a=1,∴b2=48,∴点F的轨迹方程为y2-=1(y≤-1).二、填空题6.解析:由=-,知x+2y=-5,即x+2y+5=0.答案:x+2y+5=07.解析:由题意知F(1,0),设A(x1,y1),B(x2,y2),M(x,y),则x1+x2=2x,y1+y2=2y,y=4x1,y=4x2,后两式相减并将前两式代入,得(y1-y2)y=2(x1-x2).当x1≠x2时,y=2,又A,B,M,F四点共线,所以=,代入上式,得y2=2(x-1);当x1=x2时,M(1,0)也满足这个方程,即y2=2(x-1)是所求的轨迹方程.答案:y2=2(x-1)8.解析:由题意,延长F1D,F2A并交于点B,易证Rt△ABD≌Rt△AF1D,∴|F1D|=|BD|,|F1A|=|AB|,又O为F1F2的中点,连接OD,∴OD∥F2B,从而可知|DO|=|F2B|=(|AF1|+|AF2|)=2,设点D的坐标为(x,y),则x2+y2=4.答案:x2+y2=4三、解答题9.解:(1)设圆的半径为r,圆心到直线l1的距离为d,则d==2=r,∴圆C1的方程为x2+y2=4.(2)设动点Q(x,y),A(x0,y0), AN⊥x轴于点N,∴N(x0,0),由题意,得(x,y)=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第九章 解析几何 第八节 曲线与方程课后作业 理-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部