趣题聚焦发散创新例1已知01a,xy,满足log3loglog3axxxay,若y有最大值24,试求a和x.解:题设条件可变为log3log3loglogaaaayxxx.2233loglog3log3log24aaaayxxx.当3log2ax时,logay有最小值34.因为01a,故y有最大值34a.所以3424a,14a.当14a时,33221148xa.点评:该题体现了逆向思维,知最值,求参数.例2已知函数()lg()(010)xxfxakbkab,的定义域恰为区间(0),∞,是否存在这样的ab,使得()fx恰在(1),∞上取正值,且(3)lg4f?若存在,求出ab,的值;若不存在,请说明理由.解:0xxakb∵,xakb,即logabxk为其定义域满足的条件,于是由log0abk,得1k,从而()lg()xxfxab.若存在满足题设的ab,,则33(3)lg()lg4fab,且lg()0xxab对一切1x恒成立.①∵易证()fx在(1),∞上是增函数,当1x时,()(1)fxf.②比较①②可得(1)0f,即1ab且334ab.注意到10ab,解得515122ab,.例3函数222()2(log)(2log)fxxaxb在12x时有最小值1,试确定ab的值.解:222222()2(log)(2log)2(log)22aafxxaxbxb.用心爱心专心()fx在2log2ax时,有最小值22ab.又12x∵时,()fx有最小值1,221log2212aab,,解得2a,3b.1ab.用心爱心专心