2017年上期衡阳理科实验班高一年级结业考试数学(试题卷)注意事项:1.本次考试为衡阳八中理科实验班高一年级结业考试试卷,本卷共22题,满分为150分,考试时间为120分钟。2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即通报老师。考生考试时请遵守考场纪律,开考后分钟,考生禁止进入考室。3.本卷中的选择题部分请同学们采用2B铅笔在答题卡上填涂,非选择题请用黑色0.5mm中性笔书写。★预祝考生考试顺利★第I卷选择题(共60分)一.选择题(从每题后面的四个选项中选出正确的一项,每题5分,共60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},则(∁UA)∩B=()A.{0}B.{﹣3,﹣4}C.{﹣1,﹣2}D.∅2.设向量=(2,3),=(﹣1,2),若m+与﹣2平行,则实数m等于()A.﹣2B.2C.D.﹣3.已知,则sinα+cosα的值是()A.B.C.D.4.已知a=log20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是()A.a<b<cB.c<a<bC.a<c<bD.b<c<a5.数列{an}是以a为首项,q为公比的等比数列,数列{bn}满足bn=1+a1+a2+…+an(n=1,2,…),数列{cn}满足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}为等比数列,则a+q=()A.B.3C.D.66.将函数y=sinx图象上所有的点向左平移个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为()A.B.C.D.7.若x,y满足约束条件,则z=2x+y的最大值与最小值和等于()A.﹣4B.﹣2C.2D.68.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程为()A.(x﹣1)2+(y﹣1)2=1B.(x﹣)2+(y﹣)2=2C.(x+1)2+(y+1)2=1D.(x+)2+(y+)2=29.某三棱锥的三视图如图所示,则该三棱锥的表面积为()A.B.C.D.10.已知数列{an}中,a1=1,an=3an﹣1+4(n∈N*且n≥2),,则数列{an}通项公式an为()A.3n﹣1B.3n+1﹣8C.3n﹣2D.3n11.给出定义:若x∈(m﹣,m+](其中m为整数),则m叫做实数x的“亲密的整数”,记作{x}=m,在此基础上给出下列关于函数f(x)=|x﹣{x}|的四个命题:①函数y=f(x)在x∈(0,1)上是增函数;②函数y=f(x)的图象关于直线x=(k∈z)对称;③函数y=f(x)是周期函数,最小正周期为1;④当x∈(0,2]时,函数g(x)=f(x)﹣lnx有两个零点.其中正确命题的序号是()A.②③④B.②③C.①②D.②④12.已知函数关于x的方程2[f(x)]2+(1﹣2m)f(x)﹣m=0,有5不同的实数解,则m的取值范围是()A.B.(0,+∞)C.D.第II卷非选择题(共90分)二.填空题(每题5分,共20分)13.已知△ABC的三边分别是a、b、c,且面积S=,则角C=.14.若直线2ax﹣by+2=0(a>0,b>0)经过圆x2+y2+2x﹣4y+1=0的圆心,则+的最小值是.15.设是不重合的两直线,是不重合的两平面,其中正确命题的序号是.①若//,则;②若,则;③若,则//;④若,则//或16.下列说法中,所有正确说法的序号是.①终边落在y轴上的角的集合是{α|α=,k∈Z};②函数y=2cos(x﹣)图象的一个对称中心是(,0);③函数y=tanx在第一象限是增函数;④已知,,f(x)的值域为,则a=b=1.三.解答题(请写出解答步骤,公式定理和文字说明,共6题,共70分)17.(本题满分10分)设函数f(x)=x+1(ω>0)直线y=2与函数f(x)图象相邻两交点的距离为π.(1)求f(x)的解析式;(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若点是函数y=f(x)图象的一个对称中心,且b=2,a+c=6,求△ABC面积.18.(本题满分12分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.19.(本题满分12分)数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1).(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn.20.(本题满分12分)已知函数f(x...