电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第八章 立体几何初步 8.5.3 平面与平面平行课时作业 新人教A版必修第二册-新人教A版高一第二册数学试题VIP免费

高中数学 第八章 立体几何初步 8.5.3 平面与平面平行课时作业 新人教A版必修第二册-新人教A版高一第二册数学试题_第1页
1/4
高中数学 第八章 立体几何初步 8.5.3 平面与平面平行课时作业 新人教A版必修第二册-新人教A版高一第二册数学试题_第2页
2/4
高中数学 第八章 立体几何初步 8.5.3 平面与平面平行课时作业 新人教A版必修第二册-新人教A版高一第二册数学试题_第3页
3/4
8.5.3平面与平面平行一、选择题1.如果直线a平行于平面α,则()A.平面α内有且只有一条直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a垂直的直线D.平面α内有且只有一条与a垂直的直线解析:过直线a可作无数个平面与α相交,这些交线都与a平行,所以在平面α内与直线a平行的直线有无数条,故A不正确,B正确.平面内存在与a异面垂直的直线,且有无数条,故C,D不正确.答案:B2.已知a,b表示两条不同的直线,α,β表示两个不重合的平面,给出下列四个命题:①若α∥β,a⊂α,b⊂β,则a∥b;②若a∥b,a∥α,b∥β,则α∥β;③若α∥β,a⊂α,则a∥β;④若a∥α,a∥β,则α∥β.其中正确的个数为()A.1B.2C.3D.4解析:对于①,a∥b或a与b是异面直线,故①错;对于②,也可能是α与β相交,故②错;对于④,同样α与β也可能相交,故④错.只有③对.答案:A3.如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是()A.平行B.相交C.异面D.平行和异面解析: E、F分别是AA1、BB1的中点,∴EF∥AB.又AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.又AB⊂平面ABCD,平面ABCD∩平面EFGH=GH,∴AB∥GH.答案:A4.已知在如图所示的长方体ABCD-A1B1C1D1中,E为AA1的中点,F为BB1的中点,G为CC1的中点,则在该长方体中,与平面EFG平行的面有()A.1个B.2个C.3个D.4个解析: 长方体ABCD-A1B1C1D1中,E为AA1的中点,F为BB1的中点,G为CC1的中点,∴EF∥AB,FG∥BC,又EF⊄平面ABCD,FG⊄平面ABCD,∴EF∥平面ABCD,FG∥平面ABCD,又EF∩FG=F,∴由平面与平面平行的判定定理得:平面EFG∥平面ABCD.同理,平面EFG∥平面A1B1C1D1.即在该长方体中,与平面EFG平行的平面有2个.答案:B二、填空题5.已知点S是正三角形ABC所在平面外一点,点D,E,F分别是SA,SB,SC的中点,则平面DEF与平面ABC的位置关系是________.解析:由D,E,F分别是SA,SB,SC的中点,知EF是△SBC的中位线,∴EF∥BC.又 BC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC.同理DE∥平面ABC.又 EF∩DE=E,∴平面DEF∥平面ABC.答案:平行6.如图,四棱柱ABCD-A1B1C1D1中,平面ABB1A1∥平面CDD1C1,且AF∥EC1,则四边形AEC1F的形状是________.解析:因为AF∥EC1,所以AF,EC1确定一个平面α.平面α∩平面CDD1C1=C1F,平面α∩平面ABB1A1=AE,又平面ABB1A1∥平面CDD1C1,所以AE∥C1F,所以四边形AEC1F是平行四边形.答案:平行四边形7.已知正三棱柱ABC-A1B1C1中,G是A1C1的中点,过点G的截面与侧面ABB1A1平行,若侧面ABB1A1是边长为4的正方形,则截面周长为________.解析:如图,取B1C1的中点M,BC的中点N,AC的中点H,连接GM,MN,HN,GH,则GM∥HN∥AB,MN∥GH∥AA1,所以有GM∥平面ABB1A1,MN∥平面ABB1A1.又GM∩MN=M,所以平面GMNH∥平面ABB1A1,即平面GMNH为过点G且与平面ABB1A1平行的截面.易得此截面的周长为4+4+2+2=12.答案:12三、解答题8.在空间四边形ABCD中,E,F,G分别是BC,CD,AC的中点.求证:平面EFG∥平面ABD.证明:因为E,F分别是BC,CD的中点,所以EF∥BD.又BD⊂平面ABD,EF⊄平面ABD,所以EF∥平面ABD.同理可得EG∥平面ABD.又EF∩EG=E,EF,EG⊂平面EFG,所以平面EFG∥平面ABD.9.正方形ABCD与正方形ABEF所在的平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ,求证:PQ∥平面BCE.证明:证法一(线线平行⇒线面平行)如图1所示,作PM∥AB,交BE于M,作QN∥AB交BC于N,连接MN. 正方形ABCD和正方形ABEF有公共边AB,∴AE=BD.又AP=DQ,∴PE=QB,又PM∥AB∥QN,∴==,=,∴=,又AB綊DC,∴PM∥QN且PM=QN,∴四边形PMNQ为平行四边形,∴PQ∥MN,又MN⊂平面BCE,PQ⊄平面BCE,∴PQ∥平面CBE.证法二(面面平行⇒线面平行)如图2,在平面ABEF内过点P作PM∥BE交AB于点M,连接QM,又PM⊄平面BCE,BE⊂平面BCE,∴PM∥平面BCE,=.又AE=BD,AP=DQ,∴PE=BQ,∴=,∴=,∴MQ∥AD,又AD∥BC,∴MQ∥BC,MQ⊄平面BCE,BC⊂平面BCE,∴MQ∥平面BCE,又PM∩MQ=M,∴平面PMQ∥平面BCE,又PQ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第八章 立体几何初步 8.5.3 平面与平面平行课时作业 新人教A版必修第二册-新人教A版高一第二册数学试题

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部